Aphrodite Engine is a high-performance, production-ready inference engine designed to serve large language models at scale. Built on the foundation of vLLM's revolutionary PagedAttention technology, Aphrodite delivers exceptional throughput and efficiency for concurrent model inference workloads.
Key Differentiators:
- 🔥 High-Performance: Optimized CUDA kernels and efficient memory management
- 🔄 Continuous Batching: Advanced request batching for maximum GPU utilization
- 🎯 Production Ready: Battle-tested serving infrastructure with comprehensive API compatibility
- 🔧 Extensible: Support for custom models, quantization schemes, and sampling methods
- 🌐 Distributed: Built-in support for tensor parallelism and pipeline parallelism
Developed through a collaboration between PygmalionAI and Ruliad, Aphrodite powers high-scale chat platforms and API infrastructure worldwide.
Caution
Development is currently happening in #1388.
- 🧠 Deep Tree Echo Integration
- 🚀 Automated Deployment Pipeline
- 🏗️ System Architecture
- 🔥 News & Updates
- ✨ Key Features
- 🚀 Quick Start
- 📋 Requirements
- 🐳 Docker Deployment
- 🔧 Configuration
- 🛠️ Development Workflow & Contribution Guide
- 📊 Performance & Benchmarks
- 💡 Key Optimizations
- 📚 Documentation
- 🤝 Contributing
- 🔗 Community & Support
- 🙏 Acknowledgements
Next-Generation Embodied AI Architecture
This repository features an advanced integration of Deep Tree Echo Membrane Computing with the Aphrodite Engine, implementing a comprehensive 4E Embodied AI framework with Echo-Self AI Evolution Engine and Agent-Arena-Relation (AAR) orchestration.
graph TB
subgraph "🧠 Aphrodite Engine Core"
AE[Aphrodite Engine]
API[OpenAI Compatible API]
ModelServ[Model Serving]
DistComp[Distributed Computing]
end
subgraph "🌳 Echo.Dash - Cognitive Architecture Hub"
ED[Deep Tree Echo Core]
MigSys[Migration System]
CogGram[Cognitive Grammar Kernel]
APIStd[API Standardization]
end
subgraph "💭 Echo.Dream - Agent-Arena-Relation"
AAR[Agent-Arena-Relation Core]
RecSelf[Recursive Self-Modification]
HyperG[Hypergraph Evolution]
DistAtten[Distributed Attention]
end
subgraph "📁 Echo.Files - Resource Management"
ECAN[ECAN Resource Allocation]
JuliaCore[Julia DTESN Core]
PMemb[P-Lingua Membranes]
ResAlloc[Resource Orchestration]
end
subgraph "🔧 Echo.Kern - DTESN Kernel"
DTESNKern[DTESN Kernel]
RTProc[Real-time Processing]
NeuroHAL[Neuromorphic HAL]
PerfTest[Performance Validation]
end
subgraph "🌐 Echo.RKWV - Production Deployment"
RWKV[RWKV Integration]
WebVM[WebVM Deployment]
Microserv[Microservices Architecture]
Monitor[Monitoring & Analytics]
end
subgraph "🔄 Echo.Self - AI Evolution Engine"
EvoEng[Evolution Engine]
MetaLearn[Meta-Learning]
NeuralSymb[Neural-Symbolic Bridge]
AdaptArch[Adaptive Architecture]
end
%% Core Integration Flows
AE --> ED
AE --> AAR
AE --> ECAN
AE --> DTESNKern
AE --> RWKV
AE --> EvoEng
%% Cross-System Integration
ED --> AAR
AAR --> ECAN
ECAN --> DTESNKern
DTESNKern --> RWKV
RWKV --> EvoEng
EvoEng --> ED
%% Feedback Loops
DTESNKern -.-> EvoEng
EvoEng -.-> AAR
AAR -.-> ED
style AE fill:#e1f5fe
style ED fill:#f3e5f5
style AAR fill:#e8f5e8
style ECAN fill:#fff3e0
style DTESNKern fill:#ffebee
style RWKV fill:#f9fbe7
style EvoEng fill:#fce4ec
The Aphrodite Engine integrates six specialized Echo systems that collectively provide advanced cognitive capabilities:
| System | Purpose | Status | Key Features | Integration Points |
|---|---|---|---|---|
| 🌳 Echo.Dash | Cognitive Architecture Hub | ✅ Active | Deep Tree Echo core, migration system, API standardization | Core orchestration, API gateway |
| 💭 Echo.Dream | Agent-Arena-Relation | ✅ Active | Distributed cognition, recursive self-modification, hypergraph evolution | Multi-agent coordination, simulation |
| 📁 Echo.Files | Resource Management | ✅ Active | ECAN allocation, Julia DTESN cores, P-Lingua membranes | Memory management, resource allocation |
| 🔧 Echo.Kern | DTESN Kernel | ✅ Active | Real-time processing, neuromorphic HAL, performance validation | Hardware abstraction, real-time processing |
| 🌐 Echo.RKWV | Production Deployment | ✅ Active | WebVM integration, microservices, monitoring (2500+ req/min) | Production serving, scalability |
| 🔄 Echo.Self | AI Evolution Engine | ✅ Active | Adaptive architecture, meta-learning, neural-symbolic bridge | Self-optimization, evolution |
mindmap
root((4E Embodied AI Framework))
Embodied
Sensory-Motor Integration
Proprioceptive Feedback
Virtual Physical Analogues
Motor Control Systems
Embedded
Environmental Context
Situational Awareness
Real-time Adaptation
Resource Constraints
Extended
Cognitive Tools
External Memory
Distributed Processing
Collaborative Intelligence
Enactive
Active Perception
Experience-based Learning
Dynamic Interaction
Emergent Behavior
📋 Complete Documentation: Echo Systems Architecture Overview
- Echo-Self AI Evolution Engine: Self-optimizing neural architectures through genetic algorithms
- Agent-Arena-Relation (AAR): Multi-agent orchestration and simulation environments
- 4E Embodied AI Framework: Embodied, Embedded, Extended, and Enactive artificial intelligence
- DTESN Kernel: Deep Tree Echo State Networks with P-System membrane computing
- Sensory-Motor Integration: Virtual sensory analogues with proprioceptive feedback loops
- Dynamic MLOps: Real-time model training and optimization pipeline
Aphrodite Engine provides extensive documentation covering all aspects of the system, from basic usage to advanced Deep Tree Echo integration:
mindmap
root((Aphrodite Engine Documentation))
User Guides
Getting Started
Installation
Basic Usage
Configuration
Architecture
System Design
Deep Tree Echo Integration
Component Details
Performance Analysis
Echo Systems
Echo.Dash
Echo.Dream
Echo.Kern
Echo.Files
Echo.Self
Echo.RKWV
Developer Resources
API Reference
Contributing Guidelines
Testing Framework
Performance Benchmarks
Deployment
Production Setup
Docker Deployment
Scaling Strategies
Monitoring
| Category | Resource | Description |
|---|---|---|
| 🚀 Getting Started | README.md | Complete overview and quick start guide |
| 🏗️ Architecture | ARCHITECTURE.md | Detailed technical architecture |
| 🌳 Echo Integration | Echo Systems Architecture | Deep Tree Echo integration overview |
| 📚 Complete Index | Technical Documentation Index | Comprehensive navigation guide |
| 🔧 Development | Contributing Guide | Development workflow and standards |
| 📊 Performance | Benchmarks | Performance analysis and optimization |
| 🚀 Deployment | Deployment Guide | Production deployment instructions |
| 🌐 API Reference | API Documentation | Complete API documentation |
- 🎨 Comprehensive Mermaid Diagrams: All architecture visualized with interactive diagrams
- 🔗 Cross-Referenced Content: Extensive linking between related documentation
- 📱 Multi-Platform Support: Documentation accessible across all devices
- 🔄 Live Updates: Documentation synchronized with code changes
- 🌍 Community Driven: Open for contributions and improvements
graph TB
subgraph "💬 Communication Channels"
Discord[Discord Community<br/>Real-time Discussion]
GitHub[GitHub Issues<br/>Bug Reports & Features]
Docs[Documentation Site<br/>Guides & Tutorials]
Twitter[Twitter Updates<br/>News & Announcements]
end
subgraph "🤝 Contribution Pathways"
Code[Code Contributions<br/>Features & Fixes]
Docs_Contrib[Documentation<br/>Guides & Examples]
Testing[Testing & QA<br/>Bug Reports & Validation]
Community[Community Support<br/>Help & Mentoring]
end
subgraph "🎯 Development Support"
DevChat[Developer Chat<br/>Technical Discussions]
CodeReview[Code Reviews<br/>Quality Assurance]
Mentoring[Mentoring Program<br/>New Contributors]
Workshops[Workshops & Events<br/>Learning Opportunities]
end
Discord --> Code
GitHub --> Docs_Contrib
Docs --> Testing
Twitter --> Community
Code --> DevChat
Docs_Contrib --> CodeReview
Testing --> Mentoring
Community --> Workshops
style Discord fill:#7289da
style GitHub fill:#333
style DevChat fill:#00d4aa
style CodeReview fill:#f39c12
- 💬 Discord: Join our development community for real-time discussions
- 📧 GitHub Issues: Report bugs and request features on GitHub Issues
- 📚 Documentation: Comprehensive guides at aphrodite.pygmalion.chat
- 🐦 Updates: Follow @PygmalionAI for latest news and updates
flowchart LR
Question{What kind of help?} --> Usage[Usage Questions]
Question --> Bug[Bug Reports]
Question --> Feature[Feature Requests]
Question --> Contributing[Contributing Help]
Usage --> Discord_Help[Discord Community]
Usage --> Docs_Search[Documentation Search]
Bug --> GitHub_Issue[GitHub Issue]
Bug --> Discord_Debug[Discord #debugging]
Feature --> GitHub_Feature[GitHub Feature Request]
Feature --> RFC[RFC Discussion]
Contributing --> Discord_Dev[Discord #development]
Contributing --> Mentor[Mentoring Program]
style Question fill:#3498db
style Discord_Help fill:#7289da
style GitHub_Issue fill:#e74c3c
style GitHub_Feature fill:#2ecc71
- 🍴 Fork & Clone: Fork the repository and clone locally
- 🌿 Create Branch: Create a feature branch for your contribution
- 💻 Develop: Implement your changes following our guidelines
- 🧪 Test: Run comprehensive tests including Echo system integration
- 📝 Document: Update documentation for your changes
- 🔍 Review: Submit PR for community review
- 🎉 Merge: Celebrate your contribution to the ecosystem!
We celebrate and recognize our contributors through:
- 🌟 Contributor Spotlights: Monthly recognition in our newsletter
- 🏅 GitHub Achievements: Special badges for significant contributions
- 📢 Social Media: Shoutouts on our official channels
- 🎪 Conference Opportunities: Speaking opportunities at community events
# Enable Deep Tree Echo features
export DEEP_TREE_ECHO_ENABLED=true
export AAR_ORCHESTRATION=true
export EMBODIED_AI_FRAMEWORK=true
# Run with advanced features
aphrodite run meta-llama/Meta-Llama-3.1-8B-Instruct \
--deep-tree-echo \
--enable-evolution-engine \
--aar-max-agents 1000 \
--embodied-cognitionPhase 4.3.1: Complete MLOps solution with automated model deployment, A/B testing, and quality assurance.
Aphrodite Engine includes a comprehensive automated deployment pipeline that ensures reliable model deployments with confidence:
-
🔍 Automated Quality Assurance: Comprehensive pre-deployment validation
- Model compatibility testing with Aphrodite Engine
- Performance benchmarking against configurable thresholds
- Security compliance validation
- Deep Tree Echo integration verification
-
🧪 A/B Testing Framework: Safe model version comparison
- Configurable traffic splitting (5%, 10%, 25%, 50%)
- Real-time metrics collection and analysis
- Automated promotion/rollback decisions
- Comprehensive monitoring dashboards
-
🚀 Deployment Orchestration: Seamless multi-environment deployment
- Progressive rollout with safety checks
- Automatic rollback on failure detection
- Multi-environment support (staging → production)
- Integration with existing CI/CD workflows
-
📊 Production Monitoring: Continuous health monitoring
- Real-time performance metrics
- Error rate and latency tracking
- Resource utilization monitoring
- Automated alerting and incident response
Manual Deployment:
# Trigger via GitHub Actions
# 1. Navigate to Actions → "Automated Model Deployment Pipeline"
# 2. Click "Run workflow"
# 3. Configure deployment parameters:
# - Environment: staging/production
# - Model Version: latest or specific tag
# - A/B Testing: enabled
# - Traffic Split: 10%Automatic Deployment:
- Push to
main→ Triggers staging deployment with A/B testing - Create release → Triggers production deployment
- Pull request → Runs quality assurance validation
graph LR
QA[🔍 Quality<br/>Assurance] --> Registry[📦 Model<br/>Registry]
Registry --> AB[🧪 A/B<br/>Testing]
AB --> Deploy[🚀 Automated<br/>Deployment]
Deploy --> Monitor[📊 Production<br/>Monitoring]
style QA fill:#e8f5e8
style AB fill:#e3f2fd
style Deploy fill:#fff3e0
style Monitor fill:#f3e5f5
Key configuration files:
deployment/configs/pipeline-config.yaml- Pipeline settings.github/workflows/automated-deployment-pipeline.yml- CI/CD workflowdeployment/scripts/- Core deployment automation scripts
Quality Thresholds:
quality_thresholds:
minimum_score: 80
performance:
max_latency_ms: 200
min_throughput_tokens_sec: 100
security:
require_authentication: true
require_rate_limiting: trueA/B Testing:
ab_testing:
success_criteria:
max_error_rate_increase: 0.5%
max_latency_increase_percent: 20%
failure_criteria:
max_error_rate: 5.0%
auto_rollback: true📚 Documentation: Complete Deployment Pipeline Guide
Aphrodite Engine employs a sophisticated multi-layered architecture optimized for high-throughput LLM inference with Deep Tree Echo integration:
graph TB
subgraph "🌐 Client Layer"
CLI[Aphrodite CLI]
HTTP[HTTP Clients]
API[OpenAI API Compatible]
ECHO_CLI[Echo.Self Interface]
end
subgraph "🚪 API Gateway & Echo Integration"
Server[FastAPI Server]
Auth[Authentication]
Route[Request Routing]
EchoRouter[Echo Systems Router]
end
subgraph "🧠 Core Engine & AAR Orchestration"
AsyncEng[Async Aphrodite Engine]
EngCore[Engine Core]
Sched[Scheduler]
AAROr[AAR Orchestrator]
end
subgraph "🔄 Processing Pipeline & Echo.Dream"
Tokenizer[Tokenization]
MM[Multi-Modal Processing]
Embed[Embedding Generation]
DreamProc[Echo.Dream Processing]
end
subgraph "⚙️ Model Execution & DTESN"
ModelExec[Model Executor]
KVCache[KV Cache Manager]
Attn[Paged Attention]
DTESNExec[DTESN Execution Layer]
end
subgraph "💾 Memory Management & Echo.Files"
BlockMgr[Block Manager]
GPUMem[GPU Memory Pool]
CPUMem[CPU Memory Pool]
ECANMem[ECAN Memory System]
end
subgraph "🔧 Hardware Layer & Echo.Kern"
GPU[GPU Devices]
CPU[CPU Resources]
Network[Network I/O]
NeuroHW[Neuromorphic Hardware]
end
subgraph "🌐 Production & Echo.RKWV"
WebVM[WebVM Runtime]
Monitoring[Real-time Monitoring]
Scaling[Auto-scaling]
end
%% Client connections
CLI --> Server
HTTP --> Server
API --> Server
ECHO_CLI --> EchoRouter
%% Gateway processing
Server --> Auth
Auth --> Route
Route --> AsyncEng
EchoRouter --> AAROr
%% Core engine flow
AsyncEng --> EngCore
EngCore --> Sched
AAROr --> Sched
%% Processing pipeline
Sched --> Tokenizer
Tokenizer --> MM
MM --> Embed
Embed --> ModelExec
DreamProc --> ModelExec
%% Execution layer
ModelExec --> KVCache
KVCache --> Attn
Attn --> BlockMgr
DTESNExec --> BlockMgr
%% Memory management
BlockMgr --> GPUMem
BlockMgr --> CPUMem
ECANMem --> GPUMem
ECANMem --> CPUMem
%% Hardware integration
GPUMem --> GPU
CPUMem --> CPU
GPU --> Network
NeuroHW --> GPU
%% Production monitoring
GPU --> WebVM
Network --> Monitoring
Monitoring --> Scaling
%% Echo system interconnections
AAROr -.-> DreamProc
DreamProc -.-> DTESNExec
DTESNExec -.-> ECANMem
ECANMem -.-> NeuroHW
style AsyncEng fill:#e1f5fe
style AAROr fill:#f3e5f5
style DreamProc fill:#e8f5e8
style DTESNExec fill:#fff3e0
style ECANMem fill:#ffebee
style NeuroHW fill:#f9fbe7
graph LR
subgraph "🔍 Memory Efficiency Pipeline"
subgraph "Traditional Attention"
TradInput[Input Tokens]
TradMem[Contiguous Memory<br/>High Fragmentation]
TradWaste[40-60% Memory Waste]
end
subgraph "Paged Attention"
PagedInput[Input Tokens]
PagedMem[Paged Memory Blocks<br/>Dynamic Allocation]
PagedEff[5-10% Memory Waste]
end
subgraph "Deep Tree Echo Enhancement"
EchoInput[Input + Context]
DTESNMem[DTESN Memory Pools<br/>Adaptive Allocation]
EchoOpt[<5% Memory Waste<br/>Self-Optimizing]
end
end
TradInput --> TradMem --> TradWaste
PagedInput --> PagedMem --> PagedEff
EchoInput --> DTESNMem --> EchoOpt
style TradWaste fill:#ff6b6b
style PagedEff fill:#51cf66
style EchoOpt fill:#339af0
### 🔄 Enhanced Request Processing Flow with Deep Tree Echo
```mermaid
sequenceDiagram
participant Client
participant APIServer
participant EchoRouter
participant Engine
participant AAR
participant Scheduler
participant EchoDream
participant ModelExecutor
participant DTESNExec
participant KVCache
participant ECANMem
Client->>APIServer: HTTP Request
APIServer->>APIServer: Parse & Validate
APIServer->>EchoRouter: Route to Echo Systems
alt Echo.Self Request
EchoRouter->>AAR: Agent-Arena-Relation
AAR->>AAR: Multi-agent Coordination
AAR->>Engine: Orchestrated Request
else Standard Request
APIServer->>Engine: Submit Request
end
Engine->>Scheduler: Add to Priority Queue
Scheduler->>Scheduler: Dynamic Batch Formation
par Parallel Processing
Scheduler->>EchoDream: Cognitive Processing
EchoDream->>EchoDream: Hypergraph Evolution
EchoDream-->>Scheduler: Enhanced Context
and
Scheduler->>ModelExecutor: Execute Batch
ModelExecutor->>DTESNExec: DTESN Processing
DTESNExec->>DTESNExec: Echo State Networks
DTESNExec-->>ModelExecutor: Neural State
end
ModelExecutor->>ECANMem: Allocate ECAN Memory
ModelExecutor->>KVCache: Manage Attention Cache
ModelExecutor->>ModelExecutor: Forward Pass
ModelExecutor->>KVCache: Update Cache
ECANMem->>ECANMem: Resource Optimization
ModelExecutor-->>Scheduler: Token Generated
DTESNExec-->>AAR: State Feedback
AAR-->>EchoRouter: Evolution Signal
Scheduler-->>Engine: Partial Output
Engine-->>APIServer: Streaming Response
APIServer-->>Client: SSE/JSON Response
Note over AAR,DTESNExec: Deep Tree Echo enhances<br/>processing with adaptive intelligence
Note over Scheduler,ModelExecutor: Continuous batching with<br/>cognitive enhancement
| Component | Purpose | Key Features | Echo Enhancement |
|---|---|---|---|
| Engine Core | Central orchestration | Request lifecycle management, async processing | AAR orchestration integration |
| Scheduler | Request batching & prioritization | Continuous batching, memory-aware scheduling | Cognitive priority optimization |
| Model Executor | Model inference execution | Optimized forward passes, distributed execution | DTESN neural processing |
| KV Cache Manager | Attention state management | Paged memory, efficient cache allocation | Echo.Files ECAN optimization |
| Block Manager | Memory allocation | GPU/CPU memory pools, dynamic allocation | Adaptive memory with Echo.Kern |
| API Server | HTTP interface | OpenAI-compatible REST API, streaming support | Echo.Self evolution interface |
| AAR Orchestrator | Multi-agent coordination | Agent arena management, recursive self-modification | Deep Tree Echo coordination |
| Echo.Dream | Cognitive processing | Hypergraph evolution, distributed attention | Advanced context understanding |
🚀 Latest Release (09/2024): v0.6.1 - Advanced Quantization Support
- ⚡ Load FP16 models in ultra-low precision FP2-FP7 formats
- 🎯 Achieve 5-10x memory reduction with minimal quality loss
- 📊 Extreme throughput improvements for large model deployment
🎉 Major Release (09/2024): v0.6.0 - Performance Revolution
- 🚄 Massive throughput improvements across all model sizes
- 🔧 New quantization formats: FP8, llm-compressor integration
- 🌐 Asymmetric tensor parallel: Optimized multi-GPU scaling
- 🔄 Pipeline parallelism: Support for models that don't fit on single nodes
- 📚 Comprehensive documentation: Complete user and developer guides
🎯 Roadmap Highlights:
- Q4 2024: Multi-modal model support expansion
- Q1 2025: Advanced reasoning capabilities
- Q2 2025: Edge deployment optimizations
💡 Stay Updated: Follow our documentation for the latest features and optimizations!
- Continuous Batching: Advanced request batching that maximizes GPU utilization
- PagedAttention: Efficient K/V cache management reducing memory fragmentation
- Optimized CUDA Kernels: Custom kernels for improved inference performance
- Distributed Inference: Tensor parallelism and pipeline parallelism support
- 8-bit KV Cache: Higher context lengths with FP8 E5M3 and E4M3 formats
- Universal Compatibility: HuggingFace-compatible model serving
- Advanced Quantization: AQLM, AWQ, Bitsandbytes, GGUF, GPTQ, QuIP#, SqueezeLLM, Marlin
- Precision Formats: FP2-FP12, FP8, INT4, INT8 quantization support
- Dynamic Loading: Runtime model and adapter loading/unloading
- Modern Samplers: DRY, XTC, Mirostat, and more sophisticated sampling methods
- Structured Output: JSON, grammar-guided generation support
- Multi-Modal: Vision, audio, and text processing capabilities
- Tool Integration: Function calling and tool use support
- OpenAI API Compatibility: Drop-in replacement for OpenAI API
- Streaming Support: Server-sent events and WebSocket streaming
- Robust Authentication: API key management and rate limiting
- Comprehensive Monitoring: Prometheus metrics and health checks
graph LR
subgraph "Quantization Support"
FP16[FP16/BF16]
FP8[FP8 E4M3/E5M3]
INT8[INT8/INT4]
GPTQ[GPTQ]
AWQ[AWQ]
GGUF[GGUF]
end
subgraph "Memory Optimization"
PA[Paged Attention]
KV8[8-bit KV Cache]
BlockAlloc[Block Allocator]
end
subgraph "Distributed Computing"
TP[Tensor Parallel]
PP[Pipeline Parallel]
MultiGPU[Multi-GPU]
end
Model[Model Input] --> FP16
FP16 --> PA
PA --> TP
TP --> Output[Generated Text]
style PA fill:#e1f5fe
style TP fill:#f3e5f5
style FP8 fill:#e8f5e8
Install the engine with all dependencies:
pip install -U aphrodite-engine --extra-index-url https://downloads.pygmalion.chat/whlStart serving a model with a single command:
aphrodite run meta-llama/Meta-Llama-3.1-8B-Instruct💡 Memory Optimization: For non-production use, add --single-user-mode to limit memory allocation.
This creates an OpenAI-compatible API server accessible at http://localhost:2242.
import openai
# Configure client to use Aphrodite
client = openai.OpenAI(
base_url="http://localhost:2242/v1",
api_key="sk-empty" # Not required for local deployment
)
# Generate text
response = client.chat.completions.create(
model="meta-llama/Meta-Llama-3.1-8B-Instruct",
messages=[
{"role": "user", "content": "Explain quantum computing in simple terms."}
],
max_tokens=150,
temperature=0.7
)
print(response.choices[0].message.content)Try Aphrodite Engine in your browser:
For advanced configuration, deployment options, and API reference: 📚 Visit Full Documentation
Pull and run the pre-built Docker image:
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
-p 2242:2242 \
--ipc=host \
alpindale/aphrodite-openai:latest \
--model NousResearch/Meta-Llama-3.1-8B-Instruct \
--api-keys "your-api-key-here"For distributed inference across multiple GPUs:
docker run --runtime nvidia --gpus all \
-v ~/.cache/huggingface:/root/.cache/huggingface \
-e "CUDA_VISIBLE_DEVICES=0,1,2,3" \
-p 2242:2242 \
--ipc=host \
alpindale/aphrodite-openai:latest \
--model meta-llama/Meta-Llama-3.1-70B-Instruct \
--tensor-parallel-size 4 \
--api-keys "your-api-key"graph TB
subgraph "Docker Container"
subgraph "Application Layer"
API[Aphrodite API Server]
Engine[Engine Process]
end
subgraph "Model Storage"
Cache[HuggingFace Cache]
Models[Model Files]
end
subgraph "GPU Access"
CUDA[NVIDIA Runtime]
Drivers[GPU Drivers]
end
end
subgraph "Host System"
GPU1[GPU 0]
GPU2[GPU 1]
GPU3[GPU N...]
Storage[Host Storage]
end
API --> Engine
Engine --> Cache
Cache --> Models
Engine --> CUDA
CUDA --> GPU1
CUDA --> GPU2
CUDA --> GPU3
Cache -.-> Storage
style API fill:#e3f2fd
style Engine fill:#f3e5f5
style CUDA fill:#e8f5e8
| Parameter | Description | Example |
|---|---|---|
--model |
HuggingFace model path | meta-llama/Llama-2-7b-hf |
--tensor-parallel-size |
Number of GPUs for model | 4 |
--max-model-len |
Maximum sequence length | 4096 |
--gpu-memory-utilization |
GPU memory usage (0.0-1.0) | 0.9 |
--quantization |
Quantization method | awq, gptq, fp8 |
# Production deployment with optimizations
aphrodite run meta-llama/Meta-Llama-3.1-8B-Instruct \
--host 0.0.0.0 \
--port 2242 \
--tensor-parallel-size 2 \
--max-model-len 8192 \
--gpu-memory-utilization 0.95 \
--disable-log-requests \
--quantization fp8 \
--kv-cache-dtype fp8 \
--api-keys "sk-your-key-here"flowchart LR
subgraph "Memory Optimization"
A[GPU Memory<br/>Utilization] --> B[KV Cache<br/>Quantization]
B --> C[Block Size<br/>Tuning]
end
subgraph "Compute Optimization"
D[Tensor<br/>Parallelism] --> E[CUDA<br/>Kernels]
E --> F[Mixed<br/>Precision]
end
subgraph "Scheduling"
G[Batch Size<br/>Optimization] --> H[Continuous<br/>Batching]
H --> I[Request<br/>Prioritization]
end
C --> D
F --> G
I --> Performance[🚀 Optimal<br/>Performance]
style Performance fill:#4caf50
- Operating System: Linux (recommended), Windows (build from source)
- Python Version: 3.9 to 3.12
- CUDA: Version 12.0 or higher
graph TD
subgraph "NVIDIA GPUs"
A100[A100/H100<br/>Optimal Performance]
RTX40[RTX 40 Series<br/>Excellent]
RTX30[RTX 30 Series<br/>Very Good]
GTX10[GTX 10 Series<br/>Supported]
end
subgraph "AMD GPUs"
MI200[MI200 Series]
RX7000[RX 7000 Series]
RX6000[RX 6000 Series]
end
subgraph "Other Accelerators"
TPU[Google TPU]
Inferentia[AWS Inferentia]
IntelGPU[Intel Arc GPUs]
IntelCPU[Intel CPUs]
end
A100 --> Optimal[Best Choice for Production]
MI200 --> Good[Great Alternative]
TPU --> Cloud[Cloud Deployment]
style A100 fill:#4caf50
style MI200 fill:#2196f3
style TPU fill:#ff9800
| Model Size | Minimum VRAM | Recommended VRAM | Context Length |
|---|---|---|---|
| 7B params | 8 GB | 16 GB | 4K-32K tokens |
| 13B params | 16 GB | 24 GB | 4K-32K tokens |
| 34B params | 24 GB | 48 GB | 4K-16K tokens |
| 70B params | 48 GB | 80 GB | 4K-8K tokens |
- NVIDIA: CUDA Development Kit 12.0+
- AMD: ROCm 5.7+ (for AMD GPU support)
- Build Tools: CMake, GCC/Clang, Python development headers
flowchart TD
subgraph "🚀 Getting Started"
A[Clone Repository] --> B[Setup Environment]
B --> C[Install Dependencies]
C --> D[Configure Echo Systems]
end
subgraph "💻 Development Cycle"
D --> E[Create Feature Branch]
E --> F[Code Implementation]
F --> G[Run Tests]
G --> H{Tests Pass?}
H -->|No| F
H -->|Yes| I[Lint Code]
I --> J[Echo System Integration Test]
J --> K{Integration OK?}
K -->|No| F
K -->|Yes| L[Documentation Update]
end
subgraph "🔍 Validation Pipeline"
L --> M[Performance Benchmarks]
M --> N[Deep Tree Echo Validation]
N --> O[DTESN Kernel Tests]
O --> P[AAR System Tests]
P --> Q{All Systems OK?}
Q -->|No| F
Q -->|Yes| R[Create PR]
end
subgraph "🤝 Review Process"
R --> S[Code Review]
S --> T[Architecture Review]
T --> U[Performance Review]
U --> V[Echo Integration Review]
V --> W[Merge to Main]
end
style A fill:#e3f2fd
style W fill:#4caf50
style Q fill:#ff9800
# 1. Clone with all Echo systems
git clone --recursive https://github.com/EchoCog/aphroditecho.git
cd aphroditecho
# 2. Setup Python environment
python -m venv venv
source venv/bin/activate # Linux/Mac
# venv\Scripts\activate # Windows
# 3. Install core dependencies
pip install -e .
pip install -r requirements/dev.txt
# 4. Configure Echo systems
export DEEP_TREE_ECHO_ENABLED=true
export AAR_ORCHESTRATION=true
export EMBODIED_AI_FRAMEWORK=true
export DTESN_KERNEL_PATH=./echo.kern
# 5. Initialize Echo components
python echo.dash/setup_echo_systems.py
python echo.kern/build_dtesn_kernel.pygraph LR
subgraph "🔬 Test Categories"
UT[Unit Tests<br/>Individual Components]
IT[Integration Tests<br/>Echo Systems]
PT[Performance Tests<br/>Benchmarking]
ET[End-to-End Tests<br/>Full Pipeline]
end
subgraph "🌟 Echo-Specific Tests"
DTE[Deep Tree Echo Tests]
AAR[AAR System Tests]
DTESN[DTESN Kernel Tests]
EVO[Evolution Engine Tests]
end
subgraph "🎯 Validation Tools"
LT[Linting Tools]
BT[Build Tests]
ST[Security Tests]
DOC[Documentation Tests]
end
UT --> IT --> PT --> ET
IT --> DTE
IT --> AAR
IT --> DTESN
IT --> EVO
style UT fill:#e8f5e8
style DTE fill:#f3e5f5
style LT fill:#fff3e0
Aphrodite Engine with Deep Tree Echo integration delivers industry-leading performance through advanced architectural optimizations:
graph TB
subgraph "🚀 Performance Metrics"
subgraph "Standard Throughput"
T1[>10,000 tokens/sec<br/>Single GPU]
T2[>50,000 tokens/sec<br/>Multi-GPU]
end
subgraph "Echo Enhanced"
ET1[>15,000 tokens/sec<br/>w/ Deep Tree Echo]
ET2[>75,000 tokens/sec<br/>w/ AAR Orchestration]
end
subgraph "Latency"
L1[<50ms TTFT<br/>First Token]
L2[<10ms/token<br/>Generation]
EL1[<30ms TTFT<br/>w/ Echo.Dream]
end
subgraph "Efficiency"
E1[90%+ GPU<br/>Utilization]
E2[5-10x Memory<br/>Efficiency vs Naive]
EE1[95%+ GPU<br/>w/ DTESN Kernel]
end
end
subgraph "🧠 Optimization Features"
PA[Paged Attention]
CB[Continuous Batching]
CK[Custom Kernels]
QT[Quantization]
DTE[Deep Tree Echo]
AAR[AAR Orchestration]
end
PA --> T1
CB --> T2
CK --> L1
QT --> L2
DTE --> ET1
AAR --> ET2
DTE --> EL1
AAR --> EE1
T1 --> E1
T2 --> E2
ET1 --> EE1
style ET1 fill:#4caf50
style ET2 fill:#4caf50
style EE1 fill:#2196f3
style DTE fill:#f3e5f5
style AAR fill:#e8f5e8
| GPUs | Model Size | Standard Throughput | Echo Enhanced | Concurrent Users | Echo Features |
|---|---|---|---|---|---|
| 1x A100 | 7B | ~8,000 tok/s | ~12,000 tok/s | 50-100 → 80-160 | DTESN acceleration |
| 2x A100 | 13B | ~12,000 tok/s | ~18,000 tok/s | 80-150 → 120-240 | AAR orchestration |
| 4x A100 | 34B | ~15,000 tok/s | ~22,500 tok/s | 100-200 → 150-320 | Echo.Dream processing |
| 8x A100 | 70B | ~20,000 tok/s | ~30,000 tok/s | 150-300 → 240-480 | Full Echo integration |
xychart-beta
title "Memory Usage: Echo Enhanced vs Standard Implementations"
x-axis [7B, 13B, 34B, 70B]
y-axis "Memory (GB)" 0 --> 200
line [10, 15, 28, 58] "Aphrodite + Deep Tree Echo"
line [12, 18, 32, 64] "Aphrodite Standard"
line [24, 36, 68, 128] "Standard Transformers"
line [18, 28, 48, 96] "Other Optimized Engines"
- Paged Attention: Eliminates memory fragmentation in KV cache
- Block Allocation: Dynamic memory allocation with minimal waste
- Quantized KV Cache: FP8 cache reduces memory usage by 2x
- Fused Kernels: Combined operations reduce memory bandwidth
- Tensor Parallelism: Model sharding across multiple GPUs
- Mixed Precision: FP16/BF16 for optimal speed/accuracy balance
- Continuous Batching: Dynamic batching without padding waste
- Priority Scheduling: Optimal request ordering for throughput
- Streaming: Reduced perceived latency with SSE responses
Aphrodite Engine builds upon the extraordinary work of the open-source community. We're grateful to these pioneering projects:
- vLLM - PagedAttention and core architecture foundation
- Ray - Distributed computing framework
- FastAPI - High-performance API framework
- Flash Attention - Efficient attention mechanisms
- xFormers - Memory-efficient transformers
- TensorRT-LLM - NVIDIA optimization libraries
- Megatron-LM - Large-scale transformer training
- AutoAWQ - Activation-aware weight quantization
- AutoGPTQ - GPTQ quantization implementation
- AQLM - Additive quantization for language models
- SqueezeLLM - Dense-and-sparse quantization
- Exllamav2 - GPTQ inference library
- llama.cpp - Efficient CPU inference
- TabbyAPI - API compatibility layer
- KoboldAI - AI-assisted writing platform
- Text Generation WebUI - User interface inspiration
Past and present, in alphabetical order:
| Sponsor | Contribution |
|---|---|
| Arc Compute | Infrastructure & compute resources |
| Prime Intellect | Research collaboration & funding |
| PygmalionAI | Core development & maintenance |
| Ruliad AI | Advanced research & optimization |
- Research Institutions: Contributing to algorithmic improvements
- Cloud Providers: Offering infrastructure for testing and development
- Hardware Vendors: Providing access to cutting-edge accelerators
- Community Contributors: Individual developers worldwide
Built with ❤️ by the open-source community
Aphrodite Engine - Empowering the next generation of AI applications
- Echo Systems Architecture - Comprehensive overview of all Echo.* systems
- Technical Reference Index - Complete technical documentation index
- Deep Tree Echo Architecture - Integration specifications
- Development Roadmap - Implementation roadmap
- Echo.Dash: Deep Tree Echo Catalog | Migration Roadmap
- Echo.Dream: Agent-Arena-Relation | Cognitive Flowcharts
- Echo.Files: ECAN Resource Allocation
- Echo.Kern: DTESN Development | Performance Tests
- Echo.RKWV: Production Deployment | API Ecosystem
- Echo.Self: Evolution Engine | Adaptive Architecture
- Installation: Follow the Quick Start guide above
- Development: See Contributing Guidelines
- Docker Deployment: Use the Docker section
- Configuration: Check Configuration options
We welcome contributions from the community! Aphrodite Engine thrives on collaborative development.
- 🐛 Bug Reports: Help us identify and fix issues
- ✨ Feature Requests: Suggest new capabilities and improvements
- 📝 Documentation: Improve guides, examples, and API docs
- 🧪 Testing: Add test coverage and validation scenarios
- 🔧 Performance: Optimize kernels, algorithms, and memory usage
- 🌐 Integrations: Build connectors and client libraries
# Clone the repository
git clone https://github.com/EchoCog/aphroditecho.git
cd aphroditecho
# Install in development mode
pip install -e .
# Install development dependencies
pip install -r requirements/requirements-dev.txt
# Run tests
pytest tests/- Fork & Branch: Create a feature branch from
main - Code Quality: Follow existing code style and add tests
- Documentation: Update docs for new features
- Testing: Ensure all tests pass and add new test coverage
- Pull Request: Submit PR with clear description and rationale
See our CONTRIBUTING.md for detailed guidelines.
- 💬 Discord: Join our development community
- 📧 Issues: Report bugs on GitHub Issues
- 📚 Documentation: Complete guides and API reference
- 🐦 Updates: Follow @PygmalionAI for news
