[Feature] Add GradScaler for ZeroOptim#196
Draft
nijkah wants to merge 6 commits intoEleutherAI:mainfrom
Draft
Conversation
Contributor
Author
|
Valid Test script import os
import torch, time, gc
import torch.multiprocessing as mp
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader, DistributedSampler
import torch.nn as nn
from oslo.torch.utils import get_free_port, set_seed
from oslo.torch.distributed.parallel_context import ParallelContext
from oslo.torch.nn.parallel.data_parallel.zero import ZeroRedundancyOptimizer as OsloZeroRedundancyOptimizer
from oslo.torch.nn.parallel.data_parallel.grad_scaler import DynamicGradScaler
from torch.distributed.optim import ZeroRedundancyOptimizer
def setup(rank, world_size):
os.environ["MASTER_ADDR"] = "localhost"
os.environ["MASTER_PORT"] = "12345"
os.environ["RANK"] = str(rank)
os.environ["LOCAL_RANK"] = str(rank)
os.environ["WORLD_SIZE"] = str(world_size)
os.environ["LOCAL_WORLD_SIZE"] = str(world_size)
def cleanup():
dist.destroy_process_group()
def main_print(args):
if dist.get_rank() != 0:
return
print(args)
# Timing utilities
start_time = None
def start_timer():
global start_time
gc.collect()
torch.cuda.empty_cache()
torch.cuda.reset_max_memory_allocated()
torch.cuda.synchronize()
start_time = time.time()
def end_timer_and_print(local_msg):
torch.cuda.synchronize()
end_time = time.time()
if dist.get_rank() != 0:
return
print("\n" + local_msg)
print("Total execution time = {:.3f} sec".format(end_time - start_time))
print("Max memory used by tensors = {} bytes".format(torch.cuda.max_memory_allocated()))
def make_model(in_size, out_size, num_layers):
layers = []
for _ in range(num_layers - 1):
layers.append(torch.nn.Linear(in_size, in_size))
layers.append(torch.nn.ReLU())
layers.append(torch.nn.Linear(in_size, out_size))
return torch.nn.Sequential(*tuple(layers))
def train(rank, world_size):
print(f"Running oslo DDP example on rank {rank}.")
setup(rank, world_size)
parallel_context = ParallelContext.from_torch(data_parallel_size=world_size)
epochs = 10
use_zero = True
use_oslo = True
if use_oslo:
use_zero = False
local_rank = torch.distributed.get_rank()
# Define the data transformation
transform = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
set_seed(42)
# Load the CIFAR10 dataset
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=transform)
val_dataset = datasets.CIFAR10(root='./data', train=False, download=True, transform=transform)
train_sampler = DistributedSampler(train_dataset, num_replicas=world_size, rank=rank)
train_loader = DataLoader(train_dataset, num_workers=4, batch_size=16, sampler=train_sampler)
val_loader = DataLoader(val_dataset, num_workers=4, batch_size=64)
model = models.resnet50(weights=models.resnet.ResNet50_Weights.IMAGENET1K_V2)
model.fc = nn.Linear(2048, 10) # CIFAR10 has 10 classes
net = model.to(rank)
model = DDP(net, device_ids=[rank])
loss_fn = nn.CrossEntropyLoss()
if use_zero:
opt = ZeroRedundancyOptimizer(
model.parameters(),
optimizer_class=torch.optim.AdamW,
lr=1e-4
)
elif use_oslo:
opt = OsloZeroRedundancyOptimizer(
torch.optim.AdamW(model.parameters(), lr=1e-4),
parallel_context=parallel_context,
overlap_communication=True,
)
else:
opt = torch.optim.AdamW(model.parameters(), lr=1e-4)
if use_oslo:
scaler = DynamicGradScaler(growth_interval=2000)
else:
scaler = torch.cuda.amp.GradScaler()
start_timer()
for epoch in range(epochs):
for idx, (input, target) in enumerate(train_loader):
opt.zero_grad() # set_to_none=True here can modestly improve performance
with torch.autocast(device_type='cuda', dtype=torch.float16, enabled=True):
output = net(input.half().to(rank))
assert output.dtype is torch.float16
loss = loss_fn(output, target.to(rank))
if (idx % 20) == 0 and rank == 0:
print('epoch', epoch, 'idx:', idx, 'loss:', loss)
assert loss.dtype is torch.float32
scaler.scale(loss).backward()
scaler.step(opt)
scaler.update()
# print('rank:', rank, 'param:', net[0].weight)
end_timer_and_print("Default precision:")
def main(world_size):
mp.spawn(train, args=(world_size,), nprocs=world_size, join=True)
if __name__ == "__main__":
main(2) |
Member
|
Please modify this to non-draft pr when you are done :) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
Add this suggestion to a batch that can be applied as a single commit.This suggestion is invalid because no changes were made to the code.Suggestions cannot be applied while the pull request is closed.Suggestions cannot be applied while viewing a subset of changes.Only one suggestion per line can be applied in a batch.Add this suggestion to a batch that can be applied as a single commit.Applying suggestions on deleted lines is not supported.You must change the existing code in this line in order to create a valid suggestion.Outdated suggestions cannot be applied.This suggestion has been applied or marked resolved.Suggestions cannot be applied from pending reviews.Suggestions cannot be applied on multi-line comments.Suggestions cannot be applied while the pull request is queued to merge.Suggestion cannot be applied right now. Please check back later.
Add GradScaler for ZeroOptim
Numerical Precision is not tested yet.
Description
Test Script