Skip to content

GPR works, VGP doesn't #37

@mccajm

Description

@mccajm

Do improve the speed of optimisation, I replaced GPR with VGP as follows:

domain = np.sum([GPflowOpt.domain.ContinuousParameter(f'mux{i}', mm[i], mx[i]) for i in range(7)])
domain += np.sum([GPflowOpt.domain.ContinuousParameter(f'muy{i}', mm[i+7], mx[i+7]) for i in range(7)])
domain += np.sum([GPflowOpt.domain.ContinuousParameter(f'sigmax{i}', 1e-7, 1.) for i in range(7)])
domain += np.sum([GPflowOpt.domain.ContinuousParameter(f'sigmay{i}', 1e-7, 1.) for i in range(7)])
domain += GPflowOpt.domain.ContinuousParameter('offset', endo * 0.7, endo * 1.3)
design = GPflowOpt.design.RandomDesign(500, domain)
X = design.generate()
Y = np.vstack([obj(x.reshape(1, -1)) for x in X])
model = GPflow.vgp.VGP(X, Y, GPflow.kernels.RBF(29, lengthscales=X.std(axis=0)), likelihood=GPflow.likelihoods.Gaussian())
acquisition = GPflowOpt.acquisition.ExpectedImprovement(model)
opt = GPflowOpt.optim.StagedOptimizer([GPflowOpt.optim.MCOptimizer(domain, 500),
GPflowOpt.optim.SciPyOptimizer(domain)])
optimizer = GPflowOpt.BayesianOptimizer(domain, acquisition, optimizer=opt)
optimizer.optimize(obj, n_iter=500)

GPR works, but with VGP I receive the following error:

[[Node: gradients/unnamed._models.model_datascaler.model.build_likelihood/unnamed._models.model_datascaler.model.likelihood.variational_expectations/sub_1_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _device="/j ob:localhost/replica:0/task:0/gpu:0"](gradients/unnamed._models.model_datascaler.model.build_likelihood/unnamed._models.model_datascaler.model.likelihood.variational_expectations/sub_1_grad/Shape, gradients/unnamed._models.model_datascale r.model.build_likelihood/unnamed._models.model_datascaler.model.likelihood.variational_expectations/sub_1_grad/Shape_1)]] 2017-07-18 23:03:28.798171: W tensorflow/core/framework/op_kernel.cc:1158] Invalid argument: Incompatible shapes: [501,1] vs. [500,1] [[Node: gradients/unnamed._models.model_datascaler.model.build_likelihood/unnamed._models.model_datascaler.model.likelihood.variational_expectations/sub_1_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _device="/j ob:localhost/replica:0/task:0/gpu:0"](gradients/unnamed._models.model_datascaler.model.build_likelihood/unnamed._models.model_datascaler.model.likelihood.variational_expectations/sub_1_grad/Shape, gradients/unnamed._models.model_datascale r.model.build_likelihood/unnamed._models.model_datascaler.model.likelihood.variational_expectations/sub_1_grad/Shape_1)]] Warning: optimization restart 1/5 failed 2017-07-18 23:03:28.898935: W tensorflow/core/framework/op_kernel.cc:1158] Invalid argument: Incompatible shapes: [500,1] vs. [501,1] [[Node: gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _device="/job:localhost/replica:0/task:0/gpu:0"](gradients/unnamed._models.model_datas caler.model.build_likelihood/add_1_grad/Shape, gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/Shape_1)]] 2017-07-18 23:03:28.898992: W tensorflow/core/framework/op_kernel.cc:1158] Invalid argument: Incompatible shapes: [500,1] vs. [501,1] [[Node: gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _device="/job:localhost/replica:0/task:0/gpu:0"](gradients/unnamed._models.model_datas caler.model.build_likelihood/add_1_grad/Shape, gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/Shape_1)]] 2017-07-18 23:03:28.899066: W tensorflow/core/framework/op_kernel.cc:1158] Invalid argument: Incompatible shapes: [500,1] vs. [501,1] [[Node: gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _device="/job:localhost/replica:0/task:0/gpu:0"](gradients/unnamed._models.model_datas caler.model.build_likelihood/add_1_grad/Shape, gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/Shape_1)]] 2017-07-18 23:03:28.899289: W tensorflow/core/framework/op_kernel.cc:1158] Invalid argument: Incompatible shapes: [500,1] vs. [501,1] [[Node: gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/BroadcastGradientArgs = BroadcastGradientArgs[T=DT_INT32, _device="/job:localhost/replica:0/task:0/gpu:0"](gradients/unnamed._models.model_datas caler.model.build_likelihood/add_1_grad/Shape, gradients/unnamed._models.model_datascaler.model.build_likelihood/add_1_grad/Shape_1)]] Warning: optimization restart 2/5 failed

I'm using master GPflow and GPflowOpt on TensorFlow 1.2 and Python 3.6.

Thanks.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions