Skip to content

IFBigData/GRIT

Repository files navigation

GRIT

Here we present the source codes for GRIT. GRIT is an end-to-end model designed for social relation inference. Our paper has been accepted to Neural Networks! The paper can be found here).

Alt text

The model weights can be downloaded from Google Drive or BaiduYunPan[password: 8731]

-- python version is 3.6.9

-- torch version is 1.10.0

Training

To train GRIT-SW224 on PISC_Fine dataset, run run_main.sh or the following

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 8730 main_ddp.py --output_dir=Transformer_output --img_size=224 --dataset=pisc_fine --backbone=swin_transformer

To train GRIT-SW384 on PISC_Fine dataset, run the following

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 8730 main_ddp.py --output_dir=Transformer_output --img_size=384 --dataset=pisc_fine --backbone=swin_transformer

To train GRIT-R101 on PISC_Fine dataset, run the following

python -m torch.distributed.run --standalone --nnodes=1 --nproc_per_node=8 --master_port 8730 main_ddp.py --output_dir=Transformer_output --img_size=448 --dataset=pisc_fine --backbone=resnet101

Evaluation

To evaluate the trained GRIT-SW224 model on PISC_Fine dataset, run the following

python main_eval.py --model_path=path_to_GRIT-SW224 --dataset=pisc_fine --img_size=224

To evaluate the trained GRIT-SW384 model on PISC_Fine dataset, run the following

python main_eval.py --model_path=path_to_GRIT-SW384 --dataset=pisc_fine --img_size=384

Visualization

To visualize the attention map from transformer's decoder, run the following

python visualization.py --model_path=path_to_GRIT-SW224 --dataset=pisc_fine --img_size=224

Citation

If this work is helpful, please kindly cite as:

@article{YU2024106216,
  title = {Graph-based social relation inference with multi-level conditional attention},
  journal = {Neural Networks},
  volume = {173},
  pages = {106216},
  year = {2024},
  issn = {0893-6080},
  doi = {https://doi.org/10.1016/j.neunet.2024.106216},
  url = {https://www.sciencedirect.com/science/article/pii/S0893608024001400},
  author = {Xiaotian Yu and Hanling Yi and Qie Tang and Kun Huang and Wenze Hu and Shiliang Zhang and Xiaoyu Wang}
}

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published