Skip to content

The issue regarding gene visualization #78

@mosy550

Description

@mosy550

Hello, I'm using PHATE to visualize my single-cell transcriptome data. When I only visualized the clustering, it was successful. However, when I wanted to visualize the expression level of a certain gene, the graph suddenly became very small. Could you please tell me if there's something wrong with my code?
My code is as follows:

DefaultAssay(seurat_obj) <- "RNA"
set.seed(123)
seurat_obj <- NormalizeData(seurat_obj, assay = "RNA", normalization.method = "LogNormalize", scale.factor = 10000)
seurat_obj <- FindVariableFeatures(seurat_obj, assay = "RNA", selection.method = "vst", nfeatures = 2000)
seurat_obj <- ScaleData(seurat_obj, assay = "RNA", features = rownames(seurat_obj))

eml_qc <- RunPCA(seurat_obj, assay = "RNA", features = VariableFeatures(seurat_obj), npcs = 30)
pca_coords <- seurat_obj@reductions$pca@cell.embeddings
pca_coords <- as.matrix(pca_coords)
dim(pca_coords)
phate_emb <- phate(pca_coords)
mat <- phate_emb$embedding
dim(mat)
rownames(mat) <- Cells(seurat_obj)
colnames(mat) <- c("PHATE_1", "PHATE_2")

seurat_obj[["phate"]] <- CreateDimReducObject(
embeddings = mat,
key = "PHATE_",
assay = DefaultAssay(seurat_obj)
)

DimPlot(seurat_obj,reduction = "phate",group.by = "seurat_clusters",label = T )
FeaturePlot(seurat_obj,reduction = "phate", features = 'Cd34',order=T,label = F)

Image Image

Thank you very much.

Metadata

Metadata

Assignees

No one assigned

    Labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions