-
Notifications
You must be signed in to change notification settings - Fork 0
Open
Description
安裝 Miniforge
brew install miniforge
建立 Environment
conda create --name datascience python=3.8 pip condaconda activate datascience
基本 Python Packages
conda install tensorflow keras pytorch pytest pylint flake8 autopep8 numpy scipy scikit-learn matplotlib seaborn bokeh plotly pandas requests urllib3 bs4 selenium-requests seleniumconda install pytest pylint flake8 autopep8conda install numpy scipy scikit-learnconda install matplotlib seaborn bokeh plotlyconda install pandasconda install tensorflow keras pytorch -c conda-forgeconda install plotnine koalas -c conda-forgeconda install requests selenium selenium-requests urllib3 bs4(Miniforge 目前還沒有 Selenium)pip install pyecharts cutecharts
安裝 Jupyter
conda install jupyterlab ipywidgetsconda install jupytext -c conda-forge
安裝 Spyder
brew install --cask spyder
或conda install spyder spyder-kernels(Miniforge 目前還沒有 Spyder)conda install spyder-notebook -c spyder-ide
安裝 Python Kernel
% conda install ipykernel
Collecting package metadata (current_repodata.json): done
Solving environment: done
# All requested packages already installed.
% python -m ipykernel install
Installed kernelspec python3 in /usr/local/share/jupyter/kernels/python3
安裝 R Kernel
透過 Terminal 安裝 R Kernel,不要在 RStudio 裡頭安裝:
% R
> install.packages("devtools")
> library("devtools")
> install_github("IRkernel/IRkernel")
> library("IRkernel")
> installspec()
[InstallKernelSpec] Installed kernelspec ir in /Users/kcsu/Library/Jupyter/kernels/ir
> quit()
% jupyter kernelspec list
Available kernels:
ir /Users/kcsu/Library/Jupyter/kernels/ir
python3 /opt/homebrew/Caskroom/miniforge/base/envs/datascience/share/jupyter/kernels/python3
查看 Jupyter Kernel
jupyter kernelspec list
Kernel Switch
透過 Switch Kernel 去 Switch Environment。
Automatic Environment Kernel Detection for Jupyter:
- 網址:
https://github.com/Cadair/jupyter_environment_kernels - 目前必須透過 Pip 安裝
- 使用前必須產生 Notebook Configuration 檔案:
jupyter notebook --generate-config
修改 ~/.jupyter/jupyter_notebook_config.py 檔案:
c.NotebookApp.kernel_spec_manager_class = 'environment_kernels.EnvironmentKernelSpecManager'
c.EnvironmentKernelSpecManager.conda_env_dirs=['/usr/local/anaconda3/envs']
執行 Jupyter 的時候,就可以找到所有 Environment 裡頭的所有 Kernel 了:
% jupyter lab --no-browser
...
Starting initial scan of virtual environments...
Found new kernels in environments: conda_learning, conda_anaconda3
Chrome App Mode
執行 jupyter lab --no-browser 指令,然後開啟 Google Chrome 瀏覽器,複製網址與 Token,就可以透過 Chrome App Mode 的方式執行。
如果覺得每次複製貼上很麻煩,可以修改 ~/.jupyter/jupyter_notebook_config.py 檔案 (NotebookApp 或 LabApp 都可以):
c.NotebookApp.browser = '/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome --incognito --user-data-dir="/tmp/jupyter" --app="%s"'
以後只要執行以下的指令 (記住不要再加上 --no-browser):
jupyter lab
Google Chrome 瀏覽器就會以 App Mode 的方式,執行 Jupyter Lab。
Metadata
Metadata
Assignees
Labels
No labels