Skip to content

Python Learning Environment #4

@MonsterSupreme

Description

@MonsterSupreme

安裝 Miniforge

brew install miniforge

建立 Environment

  • conda create --name datascience python=3.8 pip conda
  • conda activate datascience

基本 Python Packages

  • conda install tensorflow keras pytorch pytest pylint flake8 autopep8 numpy scipy scikit-learn matplotlib seaborn bokeh plotly pandas requests urllib3 bs4 selenium-requests selenium
  • conda install pytest pylint flake8 autopep8
  • conda install numpy scipy scikit-learn
  • conda install matplotlib seaborn bokeh plotly
  • conda install pandas
  • conda install tensorflow keras pytorch -c conda-forge
  • conda install plotnine koalas -c conda-forge
  • conda install requests selenium selenium-requests urllib3 bs4 (Miniforge 目前還沒有 Selenium)
  • pip install pyecharts cutecharts

安裝 Jupyter

  • conda install jupyterlab ipywidgets
  • conda install jupytext -c conda-forge

安裝 Spyder

  • brew install --cask spyder
  • conda install spyder spyder-kernels (Miniforge 目前還沒有 Spyder)
  • conda install spyder-notebook -c spyder-ide

安裝 Python Kernel

% conda install ipykernel
Collecting package metadata (current_repodata.json): done
Solving environment: done

# All requested packages already installed.

% python -m ipykernel install
Installed kernelspec python3 in /usr/local/share/jupyter/kernels/python3

安裝 R Kernel

透過 Terminal 安裝 R Kernel,不要在 RStudio 裡頭安裝:

% R
> install.packages("devtools")
> library("devtools")
> install_github("IRkernel/IRkernel")
> library("IRkernel")
> installspec()
[InstallKernelSpec] Installed kernelspec ir in /Users/kcsu/Library/Jupyter/kernels/ir
> quit()

% jupyter kernelspec list
Available kernels:
  ir         /Users/kcsu/Library/Jupyter/kernels/ir
  python3    /opt/homebrew/Caskroom/miniforge/base/envs/datascience/share/jupyter/kernels/python3

查看 Jupyter Kernel

  • jupyter kernelspec list

Kernel Switch

透過 Switch Kernel 去 Switch Environment。

Automatic Environment Kernel Detection for Jupyter:

  • 網址: https://github.com/Cadair/jupyter_environment_kernels
  • 目前必須透過 Pip 安裝
  • 使用前必須產生 Notebook Configuration 檔案: jupyter notebook --generate-config

修改 ~/.jupyter/jupyter_notebook_config.py 檔案:

c.NotebookApp.kernel_spec_manager_class = 'environment_kernels.EnvironmentKernelSpecManager'
c.EnvironmentKernelSpecManager.conda_env_dirs=['/usr/local/anaconda3/envs']

執行 Jupyter 的時候,就可以找到所有 Environment 裡頭的所有 Kernel 了:

% jupyter lab --no-browser
...
Starting initial scan of virtual environments...
Found new kernels in environments: conda_learning, conda_anaconda3

Chrome App Mode

執行 jupyter lab --no-browser 指令,然後開啟 Google Chrome 瀏覽器,複製網址與 Token,就可以透過 Chrome App Mode 的方式執行。

如果覺得每次複製貼上很麻煩,可以修改 ~/.jupyter/jupyter_notebook_config.py 檔案 (NotebookAppLabApp 都可以):

c.NotebookApp.browser = '/Applications/Google\ Chrome.app/Contents/MacOS/Google\ Chrome --incognito --user-data-dir="/tmp/jupyter" --app="%s"'

以後只要執行以下的指令 (記住不要再加上 --no-browser):

jupyter lab

Google Chrome 瀏覽器就會以 App Mode 的方式,執行 Jupyter Lab。

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions