- net
- loss obj
- train & test process
- visualize
pip:
- learnable-primitives [straightly_import]
- lapsolver [clone_not_possible]joint_info.mat'__header__': b'MATLAB 5.0 MAT-file Platform: posix, Created on: Sun Jul 30 22:50:25 2023', '__version__': '1.0', '__globals__': [], 'class_name': array(['microwave_1'], dtype='<U11'), 'joint_tree': array([[0, 0]]), 'primitive_align': array([[1, 0]]), 'joint_parameter_leaf': array([[ 0.0000000e+00, 1.0000000e+00, -2.4492937e-16], [ 0.0000000e+00, -1.0000000e+00, 2.4492937e-16], [ 0.0000000e+00, 0.0000000e+00, 0.0000000e+00]], dtype=float32)
part_centers.npyarray([[-0.057544 , 0.063503 , -0.5951255 ], [ 0.75385904, -0.010965 , 0.4174035 ]], dtype=float32)
plys/delta_rots.npy,plys/pred_rots.npynp.array, shape = (1, 2, 3, 3), range = [-1, 1]
plys/pred_sq.npyarray([[[0.70757157, 0.41402268, 0.01959559, 0.08339135, 0.34984398], [0.8210363 , 0.46854043, 0.4449706 , 0.11471916, 0.26079988]]], dtype=float32) np.array, shape = (1, 2, 5), range = [0, 1]
plys/SQ_ply: 多边形模型,包含顶点和面(可能含有渲染信息),open3d载入