To make a great film, you need three things–the script, the script and the script. – Alfred Hitchcock
LASER.mp4
Experiments show that LASER can generate scripts effectively based on user requirements, with only 3.18% of the final script's characters input by the user. It executes the scripts efficiently, achieving a 90.48% success rate and averaging 1606.09 tokens per simulation second per agent.
Experiment records are available in the experiment_result folder.
git clone https://github.com/CXYyp5SkNg/CXYyp5SkNg.github.io.git
git submodule update --init --recursive
conda create -n laser python=3.8
conda activate laser
pip install -r requirements.txt
setup NVIDIA Container Toolkit
docker build -t carla_amap:0.9.15 .
docker run --privileged --gpus all --net=host -e DISPLAY=$DISPLAY carla_amap:0.9.15 /bin/bash ./CarlaUE4.sh
docker stop $(docker ps -q)
export OPENAI_API_KEY=sk-your-apikey
set up Interfuser as test subject
conda activate laser
cd interfuser
pip install -r requirements.txt
python setup.py develop # this will install the customized timm where Interfuser lies in
export PYTHONPATH=$PYTHONPATH:./scenario_runner
export PYTHONPATH=$PYTHONPATH:./PythonAPI/carla/
export PYTHONPATH=$PYTHONPATH:./leaderboard
Download model weights at here. Then move the model to leaderboard/team_code/interfuser.pth.tar.
mkdir laser_scenes/your_scene_name
cp laser_scenes/Swerve/UserPrompt.txt laser_scenes/your_scene_name
vim laser_scenes/your_scene_name/UserPrompt.txt
python3 laser_sg.py -s "your_scene_name"
python3 laser_se.py -r T04Highway -s "laser_scenes/Swerve/script.json" -t 10
After the execution, check se_records folder for generated video.
