Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions nemo/core/config/schedulers.py
Original file line number Diff line number Diff line change
Expand Up @@ -284,4 +284,5 @@ def get_scheduler_config(name: str, **kwargs: Optional[Dict[str, Any]]) -> Sched
'WarmupAnnealingParams': WarmupAnnealingParams,
'PolynomialDecayAnnealingParams': PolynomialDecayAnnealingParams,
'PolynomialHoldDecayAnnealingParams': PolynomialHoldDecayAnnealingParams,
'ReduceLROnPlateauParams': ReduceLROnPlateauParams,
}
45 changes: 45 additions & 0 deletions tests/core/test_optimizers_schedulers.py
Original file line number Diff line number Diff line change
Expand Up @@ -309,6 +309,51 @@ def test_sched_config_parse_from_cls(self):
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, dict_config)
assert isinstance(scheduler_setup['scheduler'], optim.lr_scheduler.CosineAnnealing)

@pytest.mark.unit
def test_sched_config_parse_reduce_on_plateau(self):
model = TempModel()
opt_cls = optim.get_optimizer('novograd')
opt = opt_cls(model.parameters(), lr=self.INITIAL_LR)
reduce_on_plateau_parameters = {
'mode': 'min',
'factor': 0.5,
'patience': 1,
'threshold': 1e-4,
'threshold_mode': 'rel',
'min_lr': 1e-6,
'eps': 1e-7,
'verbose': True,
'cooldown': 1,
}
basic_sched_config = {
'name': 'ReduceLROnPlateau',
'monitor': 'val_loss',
'reduce_on_plateau': True,
'max_steps': self.MAX_STEPS,
}
basic_sched_config.update(reduce_on_plateau_parameters)
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, basic_sched_config)
assert isinstance(scheduler_setup['scheduler'], torch.optim.lr_scheduler.ReduceLROnPlateau)
for k, v in reduce_on_plateau_parameters.items():
if k == 'min_lr':
k += 's'
v = [v]
found_v = getattr(scheduler_setup['scheduler'], k)
assert (
found_v == v
), f"Wrong value `{repr(found_v)}` for `ReduceLROnPlateau` parameter `{k}`. Expected `{repr(v)}`."
dict_config = omegaconf.OmegaConf.create(basic_sched_config)
scheduler_setup = optim.lr_scheduler.prepare_lr_scheduler(opt, dict_config)
assert isinstance(scheduler_setup['scheduler'], torch.optim.lr_scheduler.ReduceLROnPlateau)
for k, v in reduce_on_plateau_parameters.items():
if k == 'min_lr':
k += 's'
v = [v]
found_v = getattr(scheduler_setup['scheduler'], k)
assert (
found_v == v
), f"Wrong value `{repr(found_v)}` for `ReduceLROnPlateau` parameter `{k}`. Expected `{repr(v)}`."

@pytest.mark.unit
def test_WarmupPolicy(self):
model = TempModel()
Expand Down