Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
342 changes: 342 additions & 0 deletions scripts/checkpoint_converters/convert_gemma_nemo_to_hf.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,342 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from argparse import ArgumentParser
from collections import OrderedDict

import torch
from omegaconf import open_dict
from pytorch_lightning import Trainer
from transformers import AutoModelForCausalLM, GemmaTokenizer, GemmaTokenizerFast, convert_slow_tokenizer

from nemo.collections.nlp.models.language_modeling.megatron_gpt_model import MegatronGPTModel
from nemo.collections.nlp.modules.common.megatron.utils import get_ltor_masks_and_position_ids
from nemo.collections.nlp.parts.nlp_overrides import NLPDDPStrategy
from nemo.utils import logging

"""
Script to convert a gemma checkpoint in nemo (mcore path) into a HuggingFace checkpoint.
This script can be used to 1) generate only the HF weights, or 2) generate an entire HF model folder.
This script is adapted from convert_llama_nemo_to_hf.py

1) Generate only HF weights from a nemo file:

python convert_gemma_nemo_to_hf.py \
--input_name_or_path /workspace/pretrained/HF_TO_NEMO/gemma-2b-it \
--output_path /workspace/pretrained/NEMO_TO_HF/gemma-2b-it/pytorch_model.bin

2) Generate the full HF model folder

python convert_gemma_nemo_to_hf.py \
--input_name_or_path /workspace/pretrained/HF_TO_NEMO/gemma-2b-it \
--output_path /workspace/pretrained/NEMO_TO_HF/gemma-2b-it/pytorch_model.bin \
--hf_input_path /workspace/pretrained/HF_MODELS/gemma-2b-it \
--hf_output_path /workspace/pretrained/NEMO_TO_HF/gemma-2b-it \
--input_tokenizer /workspace/pretrained/HF_MODELS/gemma-2b-it \
--hf_output_tokenizer /workspace/pretrained/NEMO_TO_HF/gemma-2b-it \
--precision 32

Use the --cpu-only flag if the model cannot fit in the GPU (e.g. Llama2 70b).
However this option makes the conversion script significantly slower.
"""


def get_args():
parser = ArgumentParser()
parser.add_argument(
"--input_name_or_path",
type=str,
default=None,
required=True,
help="Path to .nemo file or extracted folder",
)
parser.add_argument("--output_path", type=str, default=None, required=True, help="Path to HF .bin file")
parser.add_argument(
"--hf_input_path",
type=str,
default=None,
help="A HF model path, " "e.g. a folder containing https://huggingface.co/meta-llama/Llama-2-7b-hf/tree/main",
)
parser.add_argument(
"--hf_output_path",
type=str,
default=None,
help="Output HF model path, " "with the same format as above but user's own weights",
)
parser.add_argument(
"--input_tokenizer",
type=str,
default=None,
help="Path to tokenizer used for the input nemo model. (need to extract the .nemo file first)",
)
parser.add_argument(
"--hf_output_tokenizer",
type=str,
default=None,
help="Path to save the tokenizer used for the output HF model.",
)
parser.add_argument(
"--precision",
type=str,
default=None,
help="Precision of output weights."
"Defaults to precision of the input nemo weights (model.cfg.trainer.precision)",
)
parser.add_argument(
"--cpu-only",
action="store_true",
help="Load model in cpu only. Useful if the model cannot fit in GPU memory, "
"but this option makes the conversion script significantly slower.",
)
args = parser.parse_args()
return args


def verify_forward(model_path, tokenizer_path, model_string):
logging.info(f"=" * 100)
logging.info(f"Verifying forward pass for {model_string}")

input_texts = [
'query: how much protein should an adult eat',
]
logging.info(f"Running verifications {input_texts} ...")

tokenizer = GemmaTokenizer.from_pretrained(tokenizer_path, local_files_only=True)
tokenizer.pad_token = tokenizer.eos_token
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors="pt")
batch_dict_cuda = {k: v.cuda() for k, v in batch_dict.items()}

if model_string == "hf":
model = AutoModelForCausalLM.from_pretrained(model_path, local_files_only=True)
model = model.cuda().eval()
outputs = model(**batch_dict_cuda, output_hidden_states=True)
next_token = outputs.logits[0, -1].argmax()
elif model_string == 'nemo':
dummy_trainer = Trainer(devices=1, accelerator='auto', strategy=NLPDDPStrategy())
model_config = MegatronGPTModel.restore_from(model_path, trainer=dummy_trainer, return_config=True)
model_config.tensor_model_parallel_size = 1
model_config.pipeline_model_parallel_size = 1
model = MegatronGPTModel.restore_from(
model_path, trainer=dummy_trainer, override_config_path=model_config, map_location=None
)

ids = batch_dict_cuda['input_ids']
id_tensors = [torch.unsqueeze(torch.LongTensor(id_list), dim=0) for id_list in ids.cpu()]
masks_and_position_ids = [
get_ltor_masks_and_position_ids(id_tensor, tokenizer.eos_token, False, False, False)
for id_tensor in id_tensors
]

for tokens, attn_mask_and_pos_ids in zip(id_tensors, masks_and_position_ids):
attn_mask, _, pos_ids = attn_mask_and_pos_ids

outputs = model(
tokens=tokens, text_position_ids=pos_ids.cuda(), attention_mask=attn_mask.cuda(), labels=None
)
next_token = outputs.squeeze()[-1].argmax()
else:
raise ValueError(f"Model string {model_string} not recognized.")

logging.info(f"{model_string} predicted next token is: '{tokenizer.convert_ids_to_tokens([next_token])}'.")
logging.info(f"=" * 100)


def convert(input_nemo_file, output_hf_file, precision=None, cpu_only=False) -> None:
"""
Convert NeMo weights to HF weights
"""
dummy_trainer = Trainer(devices=1, accelerator='cpu', strategy=NLPDDPStrategy())
model_config = MegatronGPTModel.restore_from(input_nemo_file, trainer=dummy_trainer, return_config=True)
model_config.tensor_model_parallel_size = 1
model_config.pipeline_model_parallel_size = 1
if cpu_only:
map_location = torch.device('cpu')
model_config.use_cpu_initialization = True
else:
map_location = None

if cpu_only:
logging.info("******** Loading model on CPU. This will take a significant amount of time.")
model = MegatronGPTModel.restore_from(
input_nemo_file, trainer=dummy_trainer, override_config_path=model_config, map_location=map_location
)
if precision is None:
precision = model.cfg.precision
if precision in [32, "32"]:
dtype = torch.float32
elif precision in [16, "16", "16-mixed"]:
dtype = torch.float16
elif precision in ["bf16", "bf16-mixed"]:
dtype = torch.bfloat16
else:
logging.warning(f"Precision string {precision} is not recognized, falling back to fp32")
dtype = torch.float32 # fallback
logging.info(f"Using precision {dtype}")

param_to_weights = lambda param: param.to(dtype)
checkpoint = OrderedDict()

hidden_size = model.cfg.hidden_size
head_num = model.cfg.num_attention_heads
num_layers = model.cfg.num_layers
ffn_hidden_size = model.cfg.ffn_hidden_size
num_query_groups = model.cfg.get("num_query_groups", head_num) # different num_query_groups for 70B

head_size = hidden_size // head_num
heads_per_group = head_num // num_query_groups
qkv_total_dim = head_num + 2 * num_query_groups

# Embedding
embed_weight = model.state_dict()[f'model.embedding.word_embeddings.weight']
embed_weights_base_name = f'model.embed_tokens.weight'
checkpoint[embed_weights_base_name] = param_to_weights(embed_weight)
for l in range(int(num_layers)):
print(f"converting layer {l}")

qkv_weights = model.state_dict()[f'model.decoder.layers.{l}.self_attention.linear_qkv.weight']
qkv_weights = qkv_weights.reshape([qkv_total_dim, head_size, hidden_size])

q_slice = torch.cat(
[
torch.arange((heads_per_group + 2) * i, (heads_per_group + 2) * i + heads_per_group)
for i in range(num_query_groups)
]
)
k_slice = torch.arange(heads_per_group, qkv_total_dim, (heads_per_group + 2))
v_slice = torch.arange(heads_per_group + 1, qkv_total_dim, (heads_per_group + 2))
## Example of slices
## 7b: num_query_groups = head_num = 32,
## q_slice = [0, 3, 6, 9 , ... 90, 93]
## k_slice = [1, 4, 7, 10, ... 91, 94]
## v_slice = [2, 5, 8, 11, ... 92, 95]
## 70b (with GQA): num_query_groups = 8, head_num = 64
## q_slice = [0, 1, .. 6, 7, 10, 11, .. 16, 17, 20, 21, .. 67, 70, ... 76, 77]
## k_slice = [8, 18, 28, ... 68, 78]
## v_slice = [9, 19, 29, ... 69, 79]

q_weights_base_name = f'model.layers.{l}.self_attn.q_proj.weight'
k_weights_base_name = f'model.layers.{l}.self_attn.k_proj.weight'
v_weights_base_name = f'model.layers.{l}.self_attn.v_proj.weight'

checkpoint[q_weights_base_name] = param_to_weights(qkv_weights[q_slice].reshape(-1, hidden_size))
checkpoint[k_weights_base_name] = param_to_weights(qkv_weights[k_slice].reshape(-1, hidden_size))
checkpoint[v_weights_base_name] = param_to_weights(qkv_weights[v_slice].reshape(-1, hidden_size))

# attention dense
o_weight = model.state_dict()[f'model.decoder.layers.{l}.self_attention.linear_proj.weight']
o_weight_base_name = f'model.layers.{l}.self_attn.o_proj.weight'
checkpoint[o_weight_base_name] = param_to_weights(o_weight)

# mlp
mlp_weights = model.state_dict()[f'model.decoder.layers.{l}.mlp.linear_fc1.weight']
mlp_down_proj_weight = mlp_weights[:ffn_hidden_size, :]
mlp_gate_proj_weight = mlp_weights[ffn_hidden_size:, :]

mlp_down_proj_base_name = f'model.layers.{l}.mlp.gate_proj.weight'
mlp_gate_proj_base_name = f'model.layers.{l}.mlp.up_proj.weight'

checkpoint[mlp_down_proj_base_name] = param_to_weights(mlp_down_proj_weight)
checkpoint[mlp_gate_proj_base_name] = param_to_weights(mlp_gate_proj_weight)

mlp_up_proj_weight = model.state_dict()[f'model.decoder.layers.{l}.mlp.linear_fc2.weight']
mlp_up_proj_base_name = f'model.layers.{l}.mlp.down_proj.weight'
checkpoint[mlp_up_proj_base_name] = param_to_weights(mlp_up_proj_weight)

# layernorm
input_ln_weight = model.state_dict()[f'model.decoder.layers.{l}.self_attention.linear_qkv.layer_norm_weight']
input_ln_base_name = f'model.layers.{l}.input_layernorm.weight'
checkpoint[input_ln_base_name] = param_to_weights(input_ln_weight - 1.0)

post_attn_ln_weight = model.state_dict()[f'model.decoder.layers.{l}.mlp.linear_fc1.layer_norm_weight']
post_attn_ln_base_name = f'model.layers.{l}.post_attention_layernorm.weight'
checkpoint[post_attn_ln_base_name] = param_to_weights(post_attn_ln_weight - 1.0)

print(f"done layer {l}")

final_ln_weight = model.state_dict()[f'model.decoder.final_layernorm.weight']
final_ln_base_name = f'model.norm.weight'
checkpoint[final_ln_base_name] = param_to_weights(final_ln_weight - 1.0)

# NOTE: Gemmas uses weight tying
output_layer_weight = model.state_dict()[
f'model.embedding.word_embeddings.weight'
] # model.state_dict()[f'model.output_layer.weight']
output_layer_base_name = f'lm_head.weight'
checkpoint[output_layer_base_name] = param_to_weights(output_layer_weight)

os.makedirs(os.path.dirname(output_hf_file), exist_ok=True)
torch.save(checkpoint, output_hf_file)
logging.info(f"Weights saved to {output_hf_file}")

return dtype


def replace_hf_weights_and_tokenizer(
weights_file,
dtype,
input_hf_path,
output_hf_path,
tokenizer_path,
output_hf_tokenizer,
):
model = AutoModelForCausalLM.from_pretrained(
input_hf_path,
local_files_only=True,
torch_dtype=dtype,
)
nemo_exported = torch.load(weights_file)

if tokenizer_path:
tokenizer = GemmaTokenizer.from_pretrained(
tokenizer_path,
local_files_only=True,
legacy=False,
)
tmp_tokenizer = convert_slow_tokenizer.convert_slow_tokenizer(tokenizer)
fast_tokenizer = GemmaTokenizerFast(tokenizer_object=tmp_tokenizer)
tokenizer_length = len(fast_tokenizer)
model.resize_token_embeddings(tokenizer_length)

model.load_state_dict(nemo_exported)
model.save_pretrained(output_hf_path)
logging.info(f"Full HF model saved to {output_hf_path}")

if tokenizer_path:
fast_tokenizer.save_pretrained(output_hf_tokenizer)
tokenizer.save_pretrained(output_hf_tokenizer)
logging.info(f"Tokenizer saved to {output_hf_tokenizer}")


if __name__ == '__main__':
args = get_args()
if not args.hf_output_tokenizer and args.hf_output_path:
args.hf_output_tokenizer = args.hf_output_path
# dtype = convert(args.input_name_or_path, args.output_path, precision=args.precision, cpu_only=args.cpu_only)
if args.hf_input_path and args.hf_output_path:
"""
replace_hf_weights_and_tokenizer(
args.output_path,
dtype,
args.hf_input_path,
args.hf_output_path,
args.input_tokenizer,
args.hf_output_tokenizer,
)
"""
verify_forward(args.input_name_or_path, args.hf_output_tokenizer, "nemo")
verify_forward(args.hf_output_path, args.hf_output_tokenizer, "hf")
else:
logging.info("`hf_input_path` and/or `hf_output_path` not provided, not generating full HF model.")
logging.info(f".bin file is saved to {args.output_path}")