Skip to content

Releases: NVIDIA/Megatron-LM

NVIDIA Megatron Core 0.15.1

07 Jan 18:23
core_v0.15.1
512da5d

Choose a tag to compare

core_v0.15.1

Core v0.15.1

NVIDIA Megatron Core 0.15.0

17 Dec 23:08
core_v0.15.0
0d7e02b

Choose a tag to compare

  • Features
    • Performance
      • Fused QKV preprocessing with precomputed RoPE caches (3x preprocessing speedup, 10-14% E2E) (MR !3912)
      • Use new TE interface for user buffers (MR !3886)
      • Add CPU activation offloading via TE (MR !4286)
      • Add setting to support Adam or AdamW optimizer (MR !3866)
    • MoE
      • Add DTensor support for EP and DSv3 modules (MR !3955)
      • Add HybridEP backend to Flex Dispatcher (PR !2176)
      • Implement NVFP4 Zero Padding for MoE (PR !1985)
      • Compute shared experts before router (MR !4068)
      • Enable bias in expert MLP (MR !3858)
    • Model support
    • FSDP
      • Enable joint training of parallel modules (MR !3850)
    • Inference
      • Add CUDA Graph runner lookup table cache (up to 2x E2E speedup) (MR !4082)
      • Add MoE dropping and padding router for CUDA Graph + decode (MR !3816)
      • Integrate unified memory for dynamic inference context (MR !3985)
    • Post-training
      • Add GPT-OSS ModelOpt support with quantization, import/export (MR !4169)
      • Enable KD support with hybrid training loop (MR !4021)
      • Add ModelOpt pruning example (MR !4022)
    • RL
      • Add importance sampling and partial rollouts to Megatron RL (MR !4000)
      • Add sequence packing for RL (MR !4191)
    • Ease of use
      • Handle CUDA absence during import (MR !4120)
      • Enable SWA mixing with attention (MR !3855)
  • Bug fixes
    • Fix convergence bug in MXFP8 parameter gradient buffer reuse (MR !3999)
    • Fix loss mask cloning to prevent incorrect updates (MR !4164)
    • Fix metadata loss in checkpoints (MR !4182)
    • Fix FSDP grad accum fusion support (MR !4018)
    • Fix non-TE optimizer checkpoint issue (MR !3931)
    • Fix BERT virtual pipeline parallelism (MR !3993)
    • Fix gc.freeze() slowdown by adding gc.collect() on last layer (MR !4003)
    • Fix full iteration CUDA graph non-tensor handling (MR !4019)
    • Fix model_auto_sync mis-set and add gradient assertion (MR !4062)
    • Fix HF import dtype and checkpoint loading issues (MR !4095)
    • Fix missing initialization in ProcessGroupCollection (MR !4159)
    • Fix sink attention TP (MR !4173)
    • Fix 1f1b overlap unit tests for MTP standalone (MR !4210)
    • Fix stale state dict handling (MR !4226)
  • Known issues
  • New Contributors

We'd like to thank all our external contributors whose work was merged in this release:

Note: Some contributions came through internal MRs and use commit hashes instead of PR numbers. We are now GitHub first so all PRs moving forward will be tested and merged in public.

NVIDIA Megatron Core 0.14.0

08 Oct 15:04

Choose a tag to compare

  • Features
    • Inference
      • Add async support for DynamicInferenceEngine (MR !3187)
      • Pad input tensors and enable FP8 weights for FP8 inference (MR !3341)
      • Force inference to always gather logits with tensor parallelism (MR !3442)
      • Multi batch size CUDA Graphs for Dynamic Inference (MR !3402)
    • Post-training
      • ModelOpt updates (MR !3268)
        • Add speculative decoding AR validation feature
        • Add DeepSeek and Qwen model configs
    • Performance
      • ModelCommProcessGroup integration (MR !3391)
      • Add HyperCommGrid: N-Dimensional Communication Grid for Model Parallelism (MR !3398)
        • Flexible creation and management of communication groups
      • Add support for Spike No More embedding initializations and weight decay skipping (MR !3500)
    • MoE
      • We're actively optimizing large-scale fine-grained MoE performance on Blackwell Platform.
      • Features:
      • Memory Optimization
        • Support recomputation for FP8 layernorm/moe_act/shared_experts (MR !3465)
        • Support optimizer offloading for DSV3 FP8 training (MR !3659)
      • Performance Optimization
      • Bug fixes:
        • Fix router input jitter dtype (MR !3774)
    • Model support
    • Ease of use
      • Add uv support for source installs (MR !3615)
      • Automated weekly prereleases (MR !3574)
  • Bug fixes
    • Use mscale_all_dim for softmax_factor (MR !2800)
    • Fix FP8 param blockwise scaling unit test (MR !3480)
    • Fix unit test blockwise scaling (MR !3491)
    • Optimize prefill for token-less requests (MR !3499)
    • Add default values for Fp8Padding and Fp8Unpadding (MR !3501)
    • Fix CUDA graph logic for flexible pp layout (MR !3505)
    • Load FP8 models with strict=False (MR !3508)
    • Skip rope check for torch < 1.4.0 (MR !3528)
    • Disable Apex tests for stability (MR !3539)
    • Fix typo in parallel_state expert parallelism (MR !3548)
    • Guard modelopt on macOS (MR !3549)
    • Retry on CUDA function failure (MR !3554)
    • Fix NCCL mem pool creation error (MR !3557)
    • Fix get_rotary_seq_len return type (MR !3559)
    • Retry on CUDA function failure (MR !3560)
    • Fix NCCL allocator attribute error (MR !3565)
    • Ensure multi-prompt inference works (MR !3568)
    • Fix MD5 on FIPS systems (MR !3577)
    • Fixes dynamic context and inference bugs (MR !3582)
    • Fix TE version for interleaved fused RoPE (MR !3586)
    • Fix MTP with MoE and TP logging (MR !3594)
    • Guard TE import fix (MR !3596)
    • Add assertion for NCCL UB case (MR !3599)
    • Remove Encoder PP related Functions (MR !3604)
    • Fix segfaults in tests (MR !3605)
    • Fix TE error in distributed optimizer (MR !3625)
    • Remove redundant barrier in checkpoint flow (MR !3626)
    • Support VPP MTP, fix logging (MR !3630)
    • Retry mechanism for free(): invalid pointer errors (MR !3632)
    • Fix test_replication.py issues (MR !3633)
    • Fix typo in parallel_state (MR !3634)
    • Fix CUDA graph logic determination (MR !3635)
    • Fix TE installation error (MR !3636)
    • Ensure correct sharding type in local tests (MR !3643)
    • Fix cudagraphed backward buffer reuse for last layer (MR !3645)
    • Set default for packed_seq_params in get_rotary_seq_len (MR !3651)
    • Fix dynamic example script errors (MR !3653)
    • Guard TE import fix (MR !3666)
  • Breaking changes:
    • megatron.core.distributed.custom_fsdp refactored as breaking change to megatron.core.distributed.fsdp.src.megatron_fsdp
  • Known issues

25.09-alpha.rc1

03 Oct 14:41

Choose a tag to compare

Add fp8 attn knobs

NVIDIA Megatron Core 0.13.1

12 Aug 18:33

Choose a tag to compare

Merge branch 'cherry-pick-f36e1705' into 'core_r0.13.0'

Cherry-pick 'Use ruff linter (3627)' into 'core_r0.13.0'

See merge request ADLR/megatron-lm!3793

NVIDIA Megatron Core 0.14.0rc5

11 Aug 04:12

Choose a tag to compare

Pre-release

Prerelease: NVIDIA Megatron Core 0.14.0rc5 (2025-08-11)

NVIDIA Megatron Core 0.12.3

12 Aug 18:12

Choose a tag to compare

Merge branch 'chtruong/cherry-pick-3627' into 'core_r0.12.0'

Cherry-pick 'use yaml safe load  (3627)' into 'core_r0.12.0'

See merge request ADLR/megatron-lm!3795

NVIDIA Megatron Core 0.14.0rc4

04 Aug 04:12

Choose a tag to compare

Pre-release

Prerelease: NVIDIA Megatron Core 0.14.0rc4 (2025-08-04)

NVIDIA Megatron Core 0.14.0rc3

28 Jul 04:13

Choose a tag to compare

Pre-release

Prerelease: NVIDIA Megatron Core 0.14.0rc3 (2025-07-28)

NVIDIA Megatron Core 0.13.0

25 Jul 18:04

Choose a tag to compare

  • Support bf16 dtype for optimizer states to use precision-aware optimizer in TransformerEngine
  • MoE
    • Features:
      • Flexible Asymmetric Virtual Pipeline Parallelism with Custom Pipeline Layout (--pipeline-model-parallel-layout)
      • Add support to pass custom parallelism groups to MoE modules.
      • Add Hybrid Shard Data-Parallel support for MoE models (--num-distributed-optimizer-instances)
      • Support EP + custom FSDP training for DeepSeek-V3
      • FP8 support for Multi-Token-Prediction
    • Memory Optimization
      • Fine-grained recomputation to reduce activation memory. (--recompute-modules with --recompute-granularity selective)
      • Memory efficient token permutation by moving the probs multiplication from unpermutation to activation function of GroupedMLP.
    • Performance Optimization
      • MLA RoPE fusion kernel and YARN embedding cache.
      • FP8 padding optimization of MoE models by padding the routing map.
    • Bug fixes:
      • Fix the aux loss calculation when expert_bias or group limited routing is used. This leads to load_balancing_loss values change compared to the previous version.
      • Fix packed sequence support for MLA
    • Known Issues:
      • MTP is not compatible with flexible pipeline layout, will be fixed at !3594.
      • MTP convergence issue with TP2, will be fixed at !3594.