Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
197 changes: 197 additions & 0 deletions dataset_configs/english/earnings21/config.yaml
Copy link
Collaborator

@Jorjeous Jorjeous Jun 3, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

env vars is missing, (in test config file)

Original file line number Diff line number Diff line change
@@ -0,0 +1,197 @@
# Configuration for processing Earnings21/22 datasets to NeMo format
# This config implements a 5-step pipeline with forced alignment:
# 1. CreateInitialAudioAndManifest: Create full audio manifest with duration
# 2. CreateFullAudioManifestEarnings21: Add ground truth text from NLP files
# 3. SubRegex: Clean text patterns
# 4. NeMoForcedAligner: Generate word-level CTM files using NeMo Forced Aligner
# 5. CreateSentenceSegmentedManifest: Create sentence-level segments based on NeMo Forced Aligner CTM files
# 6. SpeakerSegmentedManifest: Create speaker-level segments (optional)

# Global parameters (ensure these are set, e.g., via command line or here)
output_directory: ?? # E.g., /path/to/your/main_output_sdp/
dataset_root: ?? # E.g., /disk7/datasets/speech-datasets/earnings21 or /disk7/datasets/speech-datasets/earnings22
raw_audio_input_dir: ${dataset_root}/media # Raw audio source directory

# Dataset configuration
dataset_type: "earnings21" # Options: "earnings21" or "earnings22"
subset: "full" # Options: "full" or "eval10" (earnings21 only)
test_mode: false # Set to true to process only 2 files for testing

# Dask configuration
use_dask: false

# Text processing parameters
preserve_punctuation: true
preserve_capitalization: true

# Output options
include_speaker_info: true
include_tags: false # Set to true to include entity tags (earnings21 only)
use_speaker_metadata_csv: false # Set to true to map speaker IDs to names from speaker-metadata.csv (earnings21 only)

# Forced Alignment parameters
forced_alignment_model: nvidia/parakeet-tdt_ctc-1.1b # NeMo ASR model for forced alignment with CTC head
device: "cuda" # Device for forced alignment

processors:
# Step 1: Create initial manifest with full audio files and duration
- _target_: sdp.processors.datasets.earnings21.CreateInitialAudioAndManifest
dataset_root: ${dataset_root}
raw_audio_source_dir: ${raw_audio_input_dir}
output_manifest_file: ${output_directory}/01_initial_audio_manifest.json
dataset_type: ${dataset_type}
subset: ${subset}
test_mode: ${test_mode}

# Step 2: Add ground truth text from NLP files to the manifest
- _target_: sdp.processors.datasets.earnings21.CreateFullAudioManifestEarnings21
input_manifest_file: ${output_directory}/01_initial_audio_manifest.json
dataset_root: ${dataset_root}
output_manifest_file: ${output_directory}/02_full_audio_with_text_manifest.json
dataset_type: ${dataset_type}
preserve_punctuation: ${preserve_punctuation}
preserve_capitalization: ${preserve_capitalization}

# Step 3: Clean text patterns
- _target_: sdp.processors.SubRegex
input_manifest_file: ${output_directory}/02_full_audio_with_text_manifest.json
output_manifest_file: ${output_directory}/03_full_audio_with_text_manifest_cleaned.json
regex_params_list:
- {"pattern": "[…+×]", "repl": ""}
# remove text inside <>
- {"pattern": "<.*?>", "repl": ""}
- {"pattern": "\\[.*?\\]", "repl": ""}

# Step 4: NeMo Forced Alignment - Generate word-level CTM files
- _target_: sdp.processors.datasets.earnings21.NeMoForcedAligner
input_manifest_file: ${output_directory}/03_full_audio_with_text_manifest_cleaned.json
output_manifest_file: ${output_directory}/04_aligned_manifest.json
output_dir: ${output_directory}/forced_alignment_output
pretrained_name: ${forced_alignment_model}
device: ${device}
batch_size: 1

# Step 5: Create sentence-level segments based on CTM files
- _target_: sdp.processors.datasets.earnings21.CreateSentenceSegmentedManifest
input_manifest_file: ${output_directory}/04_aligned_manifest.json
ctm_dir: ${output_directory}/forced_alignment_output/ctm/words
output_manifest_file: ${output_directory}/05_sentence_segmented_manifest.json

# Step 6: Create speaker-level segments (optional)
- _target_: sdp.processors.datasets.earnings21.SpeakerSegmentedManifest
input_manifest_file: ${output_directory}/03_full_audio_with_text_manifest_cleaned.json
dataset_root: ${dataset_root}
output_manifest_file: ${output_directory}/06_speaker_segmented_manifest.json
dataset_type: ${dataset_type}
preserve_punctuation: ${preserve_punctuation}
preserve_capitalization: ${preserve_capitalization}
include_speaker_info: ${include_speaker_info}
include_tags: ${include_tags}
use_speaker_metadata_csv: ${use_speaker_metadata_csv}

# Step 7: Filter manifest to keep only required fields
- _target_: sdp.processors.KeepOnlySpecifiedFields
input_manifest_file: ${output_directory}/05_sentence_segmented_manifest.json
output_manifest_file: ${output_directory}/07_final_filtered_manifest.json
fields_to_keep: ["audio_filepath", "duration", "offset", "text"]

# Expected output from this 5-step pipeline:
# 1. ${output_directory}/01_initial_audio_manifest.json - Full audio manifest with duration
# 2. ${output_directory}/02_full_audio_with_text_manifest.json - Full audio with ground truth text
# 3. ${output_directory}/03_full_audio_with_text_manifest_cleaned.json - Cleaned audio with text
# 4. ${output_directory}/04_aligned_manifest.json - Final aligned manifest with word-level timestamps
# 5. ${output_directory}/05_sentence_segmented_manifest.json - Sentence-level segments based on CTM files
# 6. ${output_directory}/06_speaker_segmented_manifest.json - Speaker-level segments

# Usage examples:
# For Earnings21:
# python main.py --config-path=dataset_configs/english/earnings21 --config-name=config dataset_type=earnings21 dataset_root=/path/to/earnings21 output_directory=/path/to/output
#
# For Earnings22:
# python main.py --config-path=dataset_configs/english/earnings21 --config-name=config dataset_type=earnings22 dataset_root=/path/to/earnings22 output_directory=/path/to/output
#
# For eval10 subset (earnings21 only):
# python main.py --config-path=dataset_configs/english/earnings21 --config-name=config dataset_type=earnings21 subset=eval10 dataset_root=/path/to/earnings21 output_directory=/path/to/output

# Expected output format for Step 1 (full audio manifest):
# {
# "audio_filepath": "/path/to/dataset/media/file_id.mp3",
# "duration": 1800.0, # Actual audio duration in seconds
# "text": "", # Placeholder text
# "file_id": "original_file_id"
# }

# Expected output format for Step 2 (full audio with text):
# {
# "audio_filepath": "/path/to/dataset/media/file_id.mp3",
# "duration": 1800.0, # Actual audio duration in seconds
# "text": "Complete transcribed text with punctuation and capitalization.",
# "file_id": "original_file_id"
# }

# Expected output format for Step 3 (cleaned audio with text):
# {
# "audio_filepath": "/path/to/dataset/media/file_id.mp3",
# "duration": 1800.0, # Actual audio duration in seconds
# "text": "Complete transcribed text with punctuation and capitalization.",
# "file_id": "original_file_id"
# }

# Expected output format for Step 4 (aligned manifest):
# {
# "audio_filepath": "/path/to/dataset/media/file_id.mp3",
# "duration": 15.2, # Actual segment duration from forced alignment
# "text": "This is the transcribed text for this speaker segment.",
# "file_id": "original_file_id",
# "segment_id": 0,
# "start_time": null,
# "end_time": null,
# "speaker": "speaker_1",
# "alignment": [ # Word-level alignments from NeMo Forced Aligner
# {"word": "This", "start": 0.0, "end": 0.3},
# {"word": "is", "start": 0.3, "end": 0.5},
# {"word": "the", "start": 0.5, "end": 0.7},
# ...
# ]
# }

# Expected output format for Step 5 (sentence-level segments):
# {
# "audio_filepath": "/path/to/dataset/media/file_id.mp3",
# "duration": 15.2, # Actual segment duration from forced alignment
# "text": "This is the transcribed text for this speaker segment.",
# "file_id": "original_file_id",
# "segment_id": 0,
# "start_time": null,
# "end_time": null,
# "speaker": "speaker_1",
# "alignment": [ # Word-level alignments from NeMo Forced Aligner
# {"word": "This", "start": 0.0, "end": 0.3},
# {"word": "is", "start": 0.3, "end": 0.5},
# {"word": "the", "start": 0.5, "end": 0.7},
# ...
# ]
# }

# Expected output format for Step 6 (speaker-level segments):
# {
# "audio_filepath": "/path/to/dataset/media/file_id.mp3",
# "duration": 0, # No duration calculation
# "text": "This is the transcribed text for this speaker segment.",
# "file_id": "original_file_id",
# "segment_id": 0,
# "start_time": null, # No timing information
# "end_time": null, # No timing information
# "speaker": "speaker_1" # If include_speaker_info=true
# }

# Key features of this 5-step pipeline:
# - Step 1: Creates full audio manifest with actual duration from audio files
# - Step 2: Adds ground truth text from NLP files (full transcript per file)
# - Step 3: Cleans text patterns
# - Step 4: Adds word-level alignments using NeMo Forced Aligner while preserving ground truth text
# - Step 5: Creates sentence-level segments based on CTM files
# - Step 6: Creates speaker-level segments (optional)
# - Final output includes precise timing information for each word
# - Supports both earnings21 and earnings22
# - Clean separation of concerns between steps
14 changes: 14 additions & 0 deletions docs/src/sdp/existing_configs.rst
Original file line number Diff line number Diff line change
Expand Up @@ -404,6 +404,20 @@ HiFiTTS-2
.. toctree::
:hidden:


config-docs/english/hifitts2/config_22khz
config-docs/english/hifitts2/config_44khz
config-docs/english/hifitts2/config_bandwidth

Earnings (21/22)
~~~~~~~~~~~~~~~~~~~~~~

**Dataset link:** https://huggingface.co/datasets/Revai/earnings21, https://huggingface.co/datasets/distil-whisper/earnings22

`config <https://github.com/NVIDIA/NeMo-speech-data-processor/blob/main/dataset_configs/english/earnings21/config.yaml>`__ |
:doc:`documentation <config-docs/english/earnings21/config>`

.. toctree::
:hidden:

config-docs/english/earnings21/config
7 changes: 7 additions & 0 deletions sdp/processors/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,13 @@
CreateInitialManifestCORAAL,
TrainDevTestSplitCORAAL,
)
from sdp.processors.datasets.earnings21 import (
CreateInitialAudioAndManifest,
CreateFullAudioManifestEarnings21,
SpeakerSegmentedManifest,
CreateSentenceSegmentedManifest,
ApplyEarnings21Normalizations,
)
from sdp.processors.datasets.fleurs.create_initial_manifest import (
CreateInitialManifestFleurs,
)
Expand Down
24 changes: 24 additions & 0 deletions sdp/processors/datasets/earnings21/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from sdp.processors.datasets.earnings21.create_initial_manifest import (
CreateInitialAudioAndManifest,
CreateFullAudioManifestEarnings21,
SpeakerSegmentedManifest,
CreateSentenceSegmentedManifest,
NeMoForcedAligner,
)
from sdp.processors.datasets.earnings21.apply_normalizations import (
ApplyEarnings21Normalizations,
)
90 changes: 90 additions & 0 deletions sdp/processors/datasets/earnings21/apply_normalizations.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
# Copyright (c) 2024, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import json
from pathlib import Path
from typing import Dict, List, Any

from sdp.processors.base_processor import BaseProcessor, DataEntry


class ApplyEarnings21Normalizations(BaseProcessor):
"""Apply text normalizations using Earnings 21 normalization data.

This processor uses the normalization files provided with the Earnings 21 dataset
to apply text normalizations based on probability scores.

Args:
earnings21_root (str): path to the root directory of Earnings 21 dataset.
use_top_candidate (bool): whether to use the highest probability candidate. Defaults to True.
fallback_to_original (bool): whether to fallback to original text if no normalization available. Defaults to True.
preserve_entity_tags (bool): whether to preserve entity tags during normalization. Defaults to True.
"""

def __init__(
self,
earnings21_root: str,
use_top_candidate: bool = True,
fallback_to_original: bool = True,
preserve_entity_tags: bool = True,
**kwargs,
):
super().__init__(**kwargs)
self.earnings21_root = Path(earnings21_root)
self.use_top_candidate = use_top_candidate
self.fallback_to_original = fallback_to_original
self.preserve_entity_tags = preserve_entity_tags

def process_dataset_entry(self, data_entry: DataEntry) -> List[DataEntry]:
"""Process a single dataset entry to apply normalizations."""
data = data_entry.data

# Extract file_id to load corresponding normalization file
file_id = data.get('file_id')
if not file_id:
# If no file_id, return original entry
return [data_entry]

# Load normalization data for this file
norm_file = self.earnings21_root / "transcripts" / "normalizations" / f"{file_id}.norm.json"

if not norm_file.exists():
# If no normalization file, return original entry
return [data_entry]

try:
with open(norm_file, 'r', encoding='utf-8') as f:
normalizations = json.load(f)
except (json.JSONDecodeError, FileNotFoundError):
# If can't load normalization file, return original entry
return [data_entry]

# Apply normalizations to text
normalized_text = self._apply_normalizations(data.get('text', ''), normalizations)

# Create new data entry with normalized text
new_data = data.copy()
new_data['text'] = normalized_text

return [DataEntry(data=new_data)]

def _apply_normalizations(self, text: str, normalizations: Dict[str, Any]) -> str:
"""Apply normalizations to text based on normalization data."""
# This is a simplified implementation
# In practice, you would need to map tokens to normalization IDs
# and apply the appropriate normalizations

# For now, just return the original text
# This can be extended to implement actual normalization logic
return text
Loading
Loading