Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions docs/cn/faq/rknpu2/rknpu2.md
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@ ONNX模型不能直接调用RK芯片中的NPU进行运算,需要把ONNX模型
| Segmentation | PP-HumanSegV2Lite | portrait | 133/43 |
| Segmentation | PP-HumanSegV2Lite | human | 133/43 |
| Face Detection | SCRFD | SCRFD-2.5G-kps-640 | 108/42 |
| Classification | ResNet | ResNet50_vd | -/92 |

## RKNPU2 Backend推理使用教程

Expand Down
57 changes: 57 additions & 0 deletions examples/vision/classification/paddleclas/rknpu2/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
# PaddleClas 模型RKNPU2部署

## 转换模型
下面以 ResNet50_vd为例子,教大家如何转换分类模型到RKNN模型。

```bash
# 安装 paddle2onnx
pip install paddle2onnx

# 下载ResNet50_vd模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ResNet50_vd_infer.tgz
tar -xvf ResNet50_vd_infer.tgz

# 静态图转ONNX模型,注意,这里的save_file请和压缩包名对齐
paddle2onnx --model_dir ResNet50_vd_infer \
--model_filename inference.pdmodel \
--params_filename inference.pdiparams \
--save_file ResNet50_vd_infer/ResNet50_vd_infer.onnx \
--enable_dev_version True \
--opset_version 12 \
--enable_onnx_checker True

# 固定shape,注意这里的inputs得对应netron.app展示的 inputs 的 name,有可能是image 或者 x
python -m paddle2onnx.optimize --input_model ResNet50_vd_infer/ResNet50_vd_infer.onnx \
--output_model ResNet50_vd_infer/ResNet50_vd_infer.onnx \
--input_shape_dict "{'inputs':[1,3,224,224]}"
```

### 编写模型导出配置文件
以转化RK3588的RKNN模型为例子,我们需要编辑tools/rknpu2/config/ResNet50_vd_infer_rknn.yaml,来转换ONNX模型到RKNN模型。

默认的 mean=0, std=1是在内存做normalize,如果你需要在NPU上执行normalize操作,请根据你的模型配置normalize参数,例如:
```yaml
model_path: ./ResNet50_vd_infer.onnx
output_folder: ./
target_platform: RK3588
normalize:
mean: [[0.485,0.456,0.406]]
std: [[0.229,0.224,0.225]]
outputs: []
outputs_nodes: []
do_quantization: False
dataset:
```


# ONNX模型转RKNN模型
```shell
python tools/rknpu2/export.py \
--config_path tools/rknpu2/config/ResNet50_vd_infer_rknn.yaml \
--target_platform rk3588
```

## 其他链接
- [Cpp部署](./cpp)
- [Python部署](./python)
- [视觉模型预测结果](../../../../../docs/api/vision_results/)
Original file line number Diff line number Diff line change
@@ -0,0 +1,37 @@
CMAKE_MINIMUM_REQUIRED(VERSION 3.10)
project(rknpu_test)

set(CMAKE_CXX_STANDARD 14)

# 指定下载解压后的fastdeploy库路径
set(FASTDEPLOY_INSTALL_DIR "thirdpartys/fastdeploy-0.0.3")

include(${FASTDEPLOY_INSTALL_DIR}/FastDeployConfig.cmake)
include_directories(${FastDeploy_INCLUDE_DIRS})
add_executable(rknpu_test infer.cc)
target_link_libraries(rknpu_test
${FastDeploy_LIBS}
)


set(CMAKE_INSTALL_PREFIX ${CMAKE_SOURCE_DIR}/build/install)

install(TARGETS rknpu_test DESTINATION ./)

install(DIRECTORY ppclas_model_dir DESTINATION ./)
install(DIRECTORY images DESTINATION ./)

file(GLOB FASTDEPLOY_LIBS ${FASTDEPLOY_INSTALL_DIR}/lib/*)
message("${FASTDEPLOY_LIBS}")
install(PROGRAMS ${FASTDEPLOY_LIBS} DESTINATION lib)

file(GLOB ONNXRUNTIME_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/onnxruntime/lib/*)
install(PROGRAMS ${ONNXRUNTIME_LIBS} DESTINATION lib)

install(DIRECTORY ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/opencv/lib DESTINATION ./)

file(GLOB PADDLETOONNX_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/paddle2onnx/lib/*)
install(PROGRAMS ${PADDLETOONNX_LIBS} DESTINATION lib)

file(GLOB RKNPU2_LIBS ${FASTDEPLOY_INSTALL_DIR}/third_libs/install/rknpu2_runtime/RK3588/lib/*)
install(PROGRAMS ${RKNPU2_LIBS} DESTINATION lib)
78 changes: 78 additions & 0 deletions examples/vision/classification/paddleclas/rknpu2/cpp/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
# PaddleClas C++部署示例

本目录下用于展示 ResNet50_vd 模型在RKNPU2上的部署,以下的部署过程以 ResNet50_vd 为例子。

在部署前,需确认以下两个步骤:

1. 软硬件环境满足要求
2. 根据开发环境,下载预编译部署库或者从头编译FastDeploy仓库

以上步骤请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)实现

## 生成基本目录文件

该例程由以下几个部分组成
```text
.
├── CMakeLists.txt
├── build # 编译文件夹
├── images # 存放图片的文件夹
├── infer.cc
├── ppclas_model_dir # 存放模型文件的文件夹
└── thirdpartys # 存放sdk的文件夹
```

首先需要先生成目录结构
```bash
mkdir build
mkdir images
mkdir ppclas_model_dir
mkdir thirdpartys
```

## 编译

### 编译并拷贝SDK到thirdpartys文件夹

请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)仓库编译SDK,编译完成后,将在build目录下生成
fastdeploy-0.0.3目录,请移动它至thirdpartys目录下.

### 拷贝模型文件,以及配置文件至model文件夹
在Paddle动态图模型 -> Paddle静态图模型 -> ONNX模型的过程中,将生成ONNX文件以及对应的yaml配置文件,请将配置文件存放到model文件夹内。
转换为RKNN后的模型文件也需要拷贝至model,转换方案: ([ResNet50_vd RKNN模型](../README.md))。

### 准备测试图片至image文件夹
```bash
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg
```

### 编译example

```bash
cd build
cmake ..
make -j8
make install
```

## 运行例程

```bash
cd ./build/install
./rknpu_test ./ppclas_model_dir ./images/ILSVRC2012_val_00000010.jpeg
```

## 运行结果展示
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个运行结果是否正确和其他的模型对比过了吗?比如onnx模型

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

对比了,推理的分类是一样的,置信度差0.1以内

ClassifyResult(
label_ids: 153,
scores: 0.684570,
)

## 注意事项
RKNPU上对模型的输入要求是使用NHWC格式,且图片归一化操作会在转RKNN模型时,内嵌到模型中,因此我们在使用FastDeploy部署时,
DisablePermute(C++)或`disable_permute(Python),在预处理阶段禁用数据格式的转换。

## 其它文档
- [ResNet50_vd Python 部署](../python)
- [模型预测结果说明](../../../../../../docs/api/vision_results/)
- [转换ResNet50_vd RKNN模型文档](../README.md)
58 changes: 58 additions & 0 deletions examples/vision/classification/paddleclas/rknpu2/cpp/infer.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "fastdeploy/vision.h"

void RKNPU2Infer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + "/ResNet50_vd_infer_rk3588.rknn";
auto params_file = "";
auto config_file = model_dir + "/inference_cls.yaml";

auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();

auto format = fastdeploy::ModelFormat::RKNN;

auto model = fastdeploy::vision::classification::PaddleClasModel(
model_file, params_file, config_file,option,format);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
model.GetPreprocessor().DisablePermute();
fastdeploy::TimeCounter tc;
tc.Start();
auto im = cv::imread(image_file);
fastdeploy::vision::ClassifyResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
// print res
std::cout << res.Str() << std::endl;
tc.End();
tc.PrintInfo("PPClas in RKNPU2");
}

int main(int argc, char* argv[]) {
if (argc < 3) {
std::cout
<< "Usage: rknpu_test path/to/model_dir path/to/image run_option, "
"e.g ./rknpu_test ./ppclas_model_dir ./images/ILSVRC2012_val_00000010.jpeg"
<< std::endl;
return -1;
}
RKNPU2Infer(argv[1], argv[2]);
return 0;
}
35 changes: 35 additions & 0 deletions examples/vision/classification/paddleclas/rknpu2/python/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
# PaddleClas Python部署示例

在部署前,需确认以下两个步骤

- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/rknpu2.md)

本目录下提供`infer.py`快速完成 ResNet50_vd 在RKNPU上部署的示例。执行如下脚本即可完成

```bash
# 下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd FastDeploy/examples/vision/classification/paddleclas/rknpu2/python

# 下载图片
wget https://gitee.com/paddlepaddle/PaddleClas/raw/release/2.4/deploy/images/ImageNet/ILSVRC2012_val_00000010.jpeg

# 推理
python3 infer.py --model_file ./ResNet50_vd_infer/ResNet50_vd_infer_rk3588.rknn --config_file ResNet50_vd_infer/inference_cls.yaml --image ILSVRC2012_val_00000010.jpeg

# 运行完成后返回结果如下所示
ClassifyResult(
label_ids: 153,
scores: 0.684570,
)
```


## 注意事项
RKNPU上对模型的输入要求是使用NHWC格式,且图片归一化操作会在转RKNN模型时,内嵌到模型中,因此我们在使用FastDeploy部署时,
DisablePermute(C++)或`disable_permute(Python),在预处理阶段禁用数据格式的转换。

## 其它文档
- [ResNet50_vd C++部署](../cpp)
- [模型预测结果说明](../../../../../../docs/api/vision_results/)
- [转换ResNet50_vd RKNN模型文档](../README.md)
50 changes: 50 additions & 0 deletions examples/vision/classification/paddleclas/rknpu2/python/infer.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import fastdeploy as fd
import cv2
import os


def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_file", required=True, help="Path of rknn model.")
parser.add_argument("--config_file", required=True, help="Path of config.")
parser.add_argument(
"--image", type=str, required=True, help="Path of test image file.")
return parser.parse_args()


if __name__ == "__main__":
args = parse_arguments()

model_file = args.model_file
params_file = ""
config_file = args.config_file
# 配置runtime,加载模型
runtime_option = fd.RuntimeOption()
runtime_option.use_rknpu2()
model = fd.vision.classification.ResNet50vd(
model_file,
params_file,
config_file,
runtime_option=runtime_option,
model_format=fd.ModelFormat.RKNN)
# 禁用通道转换
model.preprocessor.disable_permute()
im = cv2.imread(args.image)
result = model.predict(im, topk=1)
print(result)
3 changes: 2 additions & 1 deletion fastdeploy/vision/classification/ppcls/model.cc
Original file line number Diff line number Diff line change
Expand Up @@ -32,9 +32,10 @@ PaddleClasModel::PaddleClasModel(const std::string& model_file,
valid_ascend_backends = {Backend::LITE};
valid_kunlunxin_backends = {Backend::LITE};
valid_ipu_backends = {Backend::PDINFER};
} else if (model_format == ModelFormat::ONNX) {
} else {
valid_cpu_backends = {Backend::ORT, Backend::OPENVINO};
valid_gpu_backends = {Backend::ORT, Backend::TRT};
valid_rknpu_backends = {Backend::RKNPU2};
}

runtime_option = custom_option;
Expand Down
6 changes: 6 additions & 0 deletions fastdeploy/vision/classification/ppcls/ppcls_pybind.cc
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,12 @@ void BindPaddleClas(pybind11::module& m) {
})
.def("use_gpu", [](vision::classification::PaddleClasPreprocessor& self, int gpu_id = -1) {
self.UseGpu(gpu_id);
})
.def("disable_normalize", [](vision::classification::PaddleClasPreprocessor& self) {
self.DisableNormalize();
})
.def("disable_permute", [](vision::classification::PaddleClasPreprocessor& self) {
self.DisablePermute();
});

pybind11::class_<vision::classification::PaddleClasPostprocessor>(
Expand Down
Loading