Skip to content
This repository was archived by the owner on Feb 7, 2025. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 13 additions & 5 deletions generative/networks/nets/autoencoderkl.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@
import torch.nn as nn
import torch.nn.functional as F
from monai.networks.blocks import Convolution
from monai.utils import ensure_tuple_rep

# To install xformers, use pip install xformers==0.0.16rc401
if importlib.util.find_spec("xformers") is not None:
Expand Down Expand Up @@ -313,7 +314,7 @@ def __init__(
in_channels: int,
num_channels: Sequence[int],
out_channels: int,
num_res_blocks: int,
num_res_blocks: Sequence[int],
norm_num_groups: int,
norm_eps: float,
attention_levels: Sequence[bool],
Expand Down Expand Up @@ -350,7 +351,7 @@ def __init__(
output_channel = num_channels[i]
is_final_block = i == len(num_channels) - 1

for _ in range(self.num_res_blocks):
for _ in range(self.num_res_blocks[i]):
blocks.append(
ResBlock(
spatial_dims=spatial_dims,
Expand Down Expand Up @@ -449,7 +450,7 @@ def __init__(
num_channels: Sequence[int],
in_channels: int,
out_channels: int,
num_res_blocks: int,
num_res_blocks: Sequence[int],
norm_num_groups: int,
norm_eps: float,
attention_levels: Sequence[bool],
Expand Down Expand Up @@ -511,13 +512,14 @@ def __init__(
)

reversed_attention_levels = list(reversed(attention_levels))
reversed_num_res_blocks = list(reversed(num_res_blocks))
block_out_ch = reversed_block_out_channels[0]
for i in range(len(reversed_block_out_channels)):
block_in_ch = block_out_ch
block_out_ch = reversed_block_out_channels[i]
is_final_block = i == len(num_channels) - 1

for _ in range(self.num_res_blocks):
for _ in range(reversed_num_res_blocks[i]):
blocks.append(
ResBlock(
spatial_dims=spatial_dims,
Expand Down Expand Up @@ -588,7 +590,7 @@ def __init__(
spatial_dims: int,
in_channels: int = 1,
out_channels: int = 1,
num_res_blocks: int = 2,
num_res_blocks: Sequence[int] | int = (2, 2, 2, 2),
num_channels: Sequence[int] = (32, 64, 64, 64),
attention_levels: Sequence[bool] = (False, False, True, True),
latent_channels: int = 3,
Expand All @@ -606,6 +608,12 @@ def __init__(
if len(num_channels) != len(attention_levels):
raise ValueError("AutoencoderKL expects num_channels being same size of attention_levels")

if isinstance(num_res_blocks, int):
num_res_blocks = ensure_tuple_rep(num_res_blocks, len(num_channels))

if len(num_res_blocks) != len(num_channels):
raise ValueError("`num_res_blocks` should be a single integer or a tuple of integers with the same length as `num_channels`.")

self.encoder = Encoder(
spatial_dims=spatial_dims,
in_channels=in_channels,
Expand Down
16 changes: 12 additions & 4 deletions generative/networks/nets/diffusion_model_unet.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@
import torch.nn.functional as F
from monai.networks.blocks import Convolution, MLPBlock
from monai.networks.layers.factories import Pool
from monai.utils import ensure_tuple_rep
from torch import nn

# To install xformers, use pip install xformers==0.0.16rc401
Expand Down Expand Up @@ -1610,7 +1611,7 @@ def __init__(
spatial_dims: int,
in_channels: int,
out_channels: int,
num_res_blocks: int,
num_res_blocks: Sequence[int] | int = (2, 2, 2, 2),
num_channels: Sequence[int] = (32, 64, 64, 64),
attention_levels: Sequence[bool] = (False, False, True, True),
norm_num_groups: int = 32,
Expand Down Expand Up @@ -1642,14 +1643,20 @@ def __init__(
raise ValueError("DiffusionModelUNet expects num_channels being same size of attention_levels")

if isinstance(num_head_channels, int):
num_head_channels = (num_head_channels,) * len(attention_levels)
num_head_channels = ensure_tuple_rep(num_head_channels, len(attention_levels))

if len(num_head_channels) != len(attention_levels):
raise ValueError(
"num_head_channels should have the same length as attention_levels. For the i levels without attention,"
" i.e. `attention_level[i]=False`, the num_head_channels[i] will be ignored."
)

if isinstance(num_res_blocks, int):
num_res_blocks = ensure_tuple_rep(num_res_blocks, len(num_channels))

if len(num_res_blocks) != len(num_channels):
raise ValueError("`num_res_blocks` should be a single integer or a tuple of integers with the same length as `num_channels`.")

self.in_channels = in_channels
self.block_out_channels = num_channels
self.out_channels = out_channels
Expand Down Expand Up @@ -1693,7 +1700,7 @@ def __init__(
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
num_res_blocks=num_res_blocks,
num_res_blocks=num_res_blocks[i],
norm_num_groups=norm_num_groups,
norm_eps=norm_eps,
add_downsample=not is_final_block,
Expand Down Expand Up @@ -1725,6 +1732,7 @@ def __init__(
# up
self.up_blocks = nn.ModuleList([])
reversed_block_out_channels = list(reversed(num_channels))
reversed_num_res_blocks = list(reversed(num_res_blocks))
reversed_attention_levels = list(reversed(attention_levels))
reversed_num_head_channels = list(reversed(num_head_channels))
output_channel = reversed_block_out_channels[0]
Expand All @@ -1741,7 +1749,7 @@ def __init__(
prev_output_channel=prev_output_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
num_res_blocks=num_res_blocks + 1,
num_res_blocks=reversed_num_res_blocks[i] + 1,
norm_num_groups=norm_num_groups,
norm_eps=norm_eps,
add_upsample=not is_final_block,
Expand Down
28 changes: 28 additions & 0 deletions tests/test_autoencoderkl.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,6 +38,21 @@
(1, 1, 16, 16),
(1, 4, 4, 4),
],
[
{
"spatial_dims": 2,
"in_channels": 1,
"out_channels": 1,
"num_channels": (4, 4, 4),
"latent_channels": 4,
"attention_levels": (False, False, False),
"num_res_blocks": (1, 1, 2),
"norm_num_groups": 4,
},
(1, 1, 16, 16),
(1, 1, 16, 16),
(1, 4, 4, 4),
],
[
{
"spatial_dims": 2,
Expand Down Expand Up @@ -161,6 +176,19 @@ def test_model_num_channels_not_same_size_of_attention_levels(self):
norm_num_groups=16,
)

def test_model_num_channels_not_same_size_of_num_res_blocks(self):
with self.assertRaises(ValueError):
AutoencoderKL(
spatial_dims=2,
in_channels=1,
out_channels=1,
num_channels=(24, 24, 24),
attention_levels=(False, False, False),
latent_channels=8,
num_res_blocks=(8, 8),
norm_num_groups=16,
)

def test_shape_reconstruction(self):
input_param, input_shape, expected_shape, _ = CASES[0]
net = AutoencoderKL(**input_param).to(device)
Expand Down
23 changes: 23 additions & 0 deletions tests/test_diffusion_model_unet.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,17 @@
"norm_num_groups": 8,
}
],
[
{
"spatial_dims": 2,
"in_channels": 1,
"out_channels": 1,
"num_res_blocks": (1, 1, 2),
"num_channels": (8, 8, 8),
"attention_levels": (False, False, False),
"norm_num_groups": 8,
}
],
[
{
"spatial_dims": 2,
Expand Down Expand Up @@ -270,6 +281,18 @@ def test_attention_levels_with_different_length_num_head_channels(self):
norm_num_groups=8,
)

def test_num_res_blocks_with_different_length_num_channels(self):
with self.assertRaises(ValueError):
DiffusionModelUNet(
spatial_dims=2,
in_channels=1,
out_channels=1,
num_res_blocks=(1, 1),
num_channels=(8, 8, 8),
attention_levels=(False, False, False),
norm_num_groups=8,
)

def test_shape_conditioned_models(self):
net = DiffusionModelUNet(
spatial_dims=2,
Expand Down