Skip to content
This repository was archived by the owner on Feb 7, 2025. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -316,7 +316,7 @@
],
"source": [
"val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, seed=0)\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"Hand\"]\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"Hand\"]\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.LoadImaged(keys=[\"image\"]),\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@
# ### Download the validation set

val_data = MedNISTDataset(root_dir=root_dir, section="validation", download=True, seed=0)
val_datalist = [{"image": item["image"]} for item in train_data.data if item["class_name"] == "Hand"]
val_datalist = [{"image": item["image"]} for item in val_data.data if item["class_name"] == "Hand"]
val_transforms = transforms.Compose(
[
transforms.LoadImaged(keys=["image"]),
Expand Down
4 changes: 2 additions & 2 deletions tutorials/generative/2d_ddpm/2d_ddpm_compare_schedulers.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -301,7 +301,7 @@
],
"source": [
"val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, seed=0)\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"Hand\"]\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"Hand\"]\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.LoadImaged(keys=[\"image\"]),\n",
Expand Down Expand Up @@ -1096,7 +1096,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.10.6"
}
},
"nbformat": 4,
Expand Down
4 changes: 2 additions & 2 deletions tutorials/generative/2d_ddpm/2d_ddpm_compare_schedulers.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
# extension: .py
# format_name: percent
# format_version: '1.3'
# jupytext_version: 1.14.1
# jupytext_version: 1.14.4
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
Expand Down Expand Up @@ -131,7 +131,7 @@

# %%
val_data = MedNISTDataset(root_dir=root_dir, section="validation", download=True, seed=0)
val_datalist = [{"image": item["image"]} for item in train_data.data if item["class_name"] == "Hand"]
val_datalist = [{"image": item["image"]} for item in val_data.data if item["class_name"] == "Hand"]
val_transforms = transforms.Compose(
[
transforms.LoadImaged(keys=["image"]),
Expand Down
22 changes: 4 additions & 18 deletions tutorials/generative/2d_ldm/2d_ldm_tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -309,7 +309,7 @@
],
"source": [
"val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, seed=0)\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"Hand\"]\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"Hand\"]\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.LoadImaged(keys=[\"image\"]),\n",
Expand Down Expand Up @@ -425,20 +425,10 @@
],
"source": [
"unet = DiffusionModelUNet(\n",
" spatial_dims=2,\n",
" in_channels=3,\n",
" out_channels=3,\n",
" num_res_blocks=1,\n",
" num_channels=(128, 256, 256),\n",
" num_head_channels=256,\n",
" spatial_dims=2, in_channels=3, out_channels=3, num_res_blocks=1, num_channels=(128, 256, 256), num_head_channels=256\n",
")\n",
"\n",
"scheduler = DDPMScheduler(\n",
" num_train_timesteps=1000,\n",
" beta_schedule=\"linear\",\n",
" beta_start=0.0015,\n",
" beta_end=0.0195,\n",
")\n",
"scheduler = DDPMScheduler(num_train_timesteps=1000, beta_schedule=\"linear\", beta_start=0.0015, beta_end=0.0195)\n",
"\n",
"discriminator = PatchDiscriminator(\n",
" spatial_dims=2,\n",
Expand Down Expand Up @@ -1433,11 +1423,7 @@
"\n",
" epoch_loss += loss.item()\n",
"\n",
" progress_bar.set_postfix(\n",
" {\n",
" \"loss\": epoch_loss / (step + 1),\n",
" }\n",
" )\n",
" progress_bar.set_postfix({\"loss\": epoch_loss / (step + 1)})\n",
" epoch_loss_list.append(epoch_loss / (step + 1))\n",
"\n",
" if (epoch + 1) % val_interval == 0:\n",
Expand Down
2 changes: 1 addition & 1 deletion tutorials/generative/2d_ldm/2d_ldm_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,7 +104,7 @@
# ## Download the validation set

val_data = MedNISTDataset(root_dir=root_dir, section="validation", download=True, seed=0)
val_datalist = [{"image": item["image"]} for item in train_data.data if item["class_name"] == "Hand"]
val_datalist = [{"image": item["image"]} for item in val_data.data if item["class_name"] == "Hand"]
val_transforms = transforms.Compose(
[
transforms.LoadImaged(keys=["image"]),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -368,7 +368,7 @@
],
"source": [
"val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, seed=0)\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.LoadImaged(keys=[\"image\"]),\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -139,7 +139,7 @@

# %%
val_data = MedNISTDataset(root_dir=root_dir, section="validation", download=True, seed=0)
val_datalist = [{"image": item["image"]} for item in train_data.data if item["class_name"] == "HeadCT"]
val_datalist = [{"image": item["image"]} for item in val_data.data if item["class_name"] == "HeadCT"]
val_transforms = transforms.Compose(
[
transforms.LoadImaged(keys=["image"]),
Expand Down
2 changes: 1 addition & 1 deletion tutorials/generative/2d_vqgan/2d_vqgan_tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -266,7 +266,7 @@
],
"source": [
"val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, progress=False, seed=0)\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.LoadImaged(keys=[\"image\"]),\n",
Expand Down
2 changes: 1 addition & 1 deletion tutorials/generative/2d_vqgan/2d_vqgan_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,7 +124,7 @@

# %%
val_data = MedNISTDataset(root_dir=root_dir, section="validation", download=True, progress=False, seed=0)
val_datalist = [{"image": item["image"]} for item in train_data.data if item["class_name"] == "HeadCT"]
val_datalist = [{"image": item["image"]} for item in val_data.data if item["class_name"] == "HeadCT"]
val_transforms = transforms.Compose(
[
transforms.LoadImaged(keys=["image"]),
Expand Down
2 changes: 1 addition & 1 deletion tutorials/generative/2d_vqvae/2d_vqvae_tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -315,7 +315,7 @@
],
"source": [
"val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, seed=0)\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.LoadImaged(keys=[\"image\"]),\n",
Expand Down
2 changes: 1 addition & 1 deletion tutorials/generative/2d_vqvae/2d_vqvae_tutorial.py
Original file line number Diff line number Diff line change
Expand Up @@ -99,7 +99,7 @@
# ### Download the validation set

val_data = MedNISTDataset(root_dir=root_dir, section="validation", download=True, seed=0)
val_datalist = [{"image": item["image"]} for item in train_data.data if item["class_name"] == "HeadCT"]
val_datalist = [{"image": item["image"]} for item in val_data.data if item["class_name"] == "HeadCT"]
val_transforms = transforms.Compose(
[
transforms.LoadImaged(keys=["image"]),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -294,7 +294,7 @@
],
"source": [
"val_data = MedNISTDataset(root_dir=root_dir, section=\"validation\", download=True, seed=0)\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in train_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_datalist = [{\"image\": item[\"image\"]} for item in val_data.data if item[\"class_name\"] == \"HeadCT\"]\n",
"val_transforms = transforms.Compose(\n",
" [\n",
" transforms.LoadImaged(keys=[\"image\"]),\n",
Expand Down Expand Up @@ -490,7 +490,6 @@
" in_channels=1,\n",
" out_channels=1,\n",
" num_res_layers=2,\n",
" num_levels=2,\n",
" downsample_parameters=((2, 4, 1, 1), (2, 4, 1, 1)),\n",
" upsample_parameters=((2, 4, 1, 1, 0), (2, 4, 1, 1, 0)),\n",
" num_channels=(256, 256),\n",
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -123,7 +123,7 @@

# %%
val_data = MedNISTDataset(root_dir=root_dir, section="validation", download=True, seed=0)
val_datalist = [{"image": item["image"]} for item in train_data.data if item["class_name"] == "HeadCT"]
val_datalist = [{"image": item["image"]} for item in val_data.data if item["class_name"] == "HeadCT"]
val_transforms = transforms.Compose(
[
transforms.LoadImaged(keys=["image"]),
Expand All @@ -149,7 +149,6 @@
in_channels=1,
out_channels=1,
num_res_layers=2,
num_levels=2,
downsample_parameters=((2, 4, 1, 1), (2, 4, 1, 1)),
upsample_parameters=((2, 4, 1, 1, 0), (2, 4, 1, 1, 0)),
num_channels=(256, 256),
Expand Down