Skip to content

RandHistogramShift transform gives nan values for input when all values are 0 #5875

@surajpaib

Description

@surajpaib

Describe the bug
RandHistogramShift transform gives nan values when an input with all zeros is passed to it.

To Reproduce

import monai
import torch

transform = monai.transforms.RandHistogramShift(prob=1)

tensor = torch.zeros((2, 2))
print(transform(tensor))

gives the following result,

tensor([[nan, nan],
        [nan, nan]])

Expected behavior
The returned tensor should contain zeros instead of nan values.

In a previous version of monai, this worked fine as it was called on a ndarray by default. In the current version, even if an ndarray is passed, the same nan behaviour is thrown. It looks like the functionality to handle a ndarray

if isinstance(x, np.ndarray):

is never called because of
img = convert_to_tensor(img, track_meta=get_track_meta())

Environment

================================
Printing MONAI config...
================================
MONAI version: 1.1.0+29.gbdf5e1ec
Numpy version: 1.23.5
Pytorch version: 1.13.1+cu117
MONAI flags: HAS_EXT = False, USE_COMPILED = False, USE_META_DICT = False
MONAI rev id: bdf5e1ec15724ecf4e3634955cf34a35843a3e3e
MONAI __file__: /home/suraj/anaconda3/envs/monai-dev/lib/python3.8/site-packages/monai/__init__.py

Optional dependencies:
Pytorch Ignite version: 0.4.10
ITK version: 5.3.0
Nibabel version: 5.0.0
scikit-image version: 0.19.3
Pillow version: 9.4.0
Tensorboard version: 2.11.2
gdown version: 4.6.0
TorchVision version: 0.14.1+cu117
tqdm version: 4.64.1
lmdb version: 1.4.0
psutil version: 5.9.4
pandas version: 1.5.2
einops version: 0.6.0
transformers version: 4.21.3
mlflow version: 2.1.1
pynrrd version: 1.0.0

For details about installing the optional dependencies, please visit:
    https://docs.monai.io/en/latest/installation.html#installing-the-recommended-dependencies


================================
Printing system config...
================================
System: Linux
Linux version: Ubuntu 20.04.4 LTS
Platform: Linux-5.13.0-40-generic-x86_64-with-glibc2.10
Processor: x86_64
Machine: x86_64
Python version: 3.8.15
Process name: python
Command: ['python']
Num physical CPUs: 12
Num logical CPUs: 12
Num usable CPUs: 12
CPU usage (%): [13.4, 8.7, 11.2, 10.7, 8.4, 6.8, 5.8, 5.7, 50.0, 8.4, 6.0, 27.5]
CPU freq. (MHz): 914
Load avg. in last 1, 5, 15 mins (%): [6.7, 13.4, 47.2]
Disk usage (%): 78.3
Avg. sensor temp. (Celsius): UNKNOWN for given OS
Total physical memory (GB): 250.6
Available memory (GB): 93.0
Used memory (GB): 5.7

================================
Printing GPU config...
================================
Num GPUs: 4
Has CUDA: True
CUDA version: 11.7
cuDNN enabled: True
cuDNN version: 8500
Current device: 0
Library compiled for CUDA architectures: ['sm_37', 'sm_50', 'sm_60', 'sm_70', 'sm_75', 'sm_80', 'sm_86']
GPU 0 Name: Quadro RTX 8000
GPU 0 Is integrated: False
GPU 0 Is multi GPU board: False
GPU 0 Multi processor count: 72
GPU 0 Total memory (GB): 47.5
GPU 0 CUDA capability (maj.min): 7.5
GPU 1 Name: Quadro RTX 8000
GPU 1 Is integrated: False
GPU 1 Is multi GPU board: False
GPU 1 Multi processor count: 72
GPU 1 Total memory (GB): 47.5
GPU 1 CUDA capability (maj.min): 7.5
GPU 2 Name: Quadro RTX 8000
GPU 2 Is integrated: False
GPU 2 Is multi GPU board: False
GPU 2 Multi processor count: 72
GPU 2 Total memory (GB): 47.5
GPU 2 CUDA capability (maj.min): 7.5
GPU 3 Name: Quadro RTX 8000
GPU 3 Is integrated: False
GPU 3 Is multi GPU board: False
GPU 3 Multi processor count: 72
GPU 3 Total memory (GB): 47.5
GPU 3 CUDA capability (maj.min): 7.5

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions