Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 15 additions & 9 deletions monai/config/deviceconfig.py
Original file line number Diff line number Diff line change
Expand Up @@ -196,28 +196,34 @@ def get_gpu_info() -> OrderedDict:
_dict_append(output, "Num GPUs", lambda: num_gpus)

_dict_append(output, "Has CUDA", lambda: bool(torch.cuda.is_available()))

if output["Has CUDA"]:
_dict_append(output, "CUDA version", lambda: torch.version.cuda)
cudnn_ver = torch.backends.cudnn.version()
_dict_append(output, "cuDNN enabled", lambda: bool(cudnn_ver))

if cudnn_ver:
_dict_append(output, "cuDNN version", lambda: cudnn_ver)

if num_gpus > 0:
_dict_append(output, "Current device", torch.cuda.current_device)
if hasattr(torch.cuda, "get_arch_list"): # get_arch_list is new in torch 1.7.1
_dict_append(output, "Library compiled for CUDA architectures", torch.cuda.get_arch_list)

for gpu in range(num_gpus):
_dict_append(output, "Info for GPU", gpu)
gpu_info = torch.cuda.get_device_properties(gpu)
_dict_append(output, "\tName", lambda: gpu_info.name)
_dict_append(output, "\tIs integrated", lambda: bool(gpu_info.is_integrated))
_dict_append(output, "\tIs multi GPU board", lambda: bool(gpu_info.is_multi_gpu_board))
_dict_append(output, "\tMulti processor count", lambda: gpu_info.multi_processor_count)
_dict_append(output, "\tTotal memory (GB)", lambda: round(gpu_info.total_memory / 1024 ** 3, 1))
_dict_append(output, "\tCached memory (GB)", lambda: round(torch.cuda.memory_reserved(gpu) / 1024 ** 3, 1))
_dict_append(output, "\tAllocated memory (GB)", lambda: round(torch.cuda.memory_allocated(gpu) / 1024 ** 3, 1))
_dict_append(output, "\tCUDA capability (maj.min)", lambda: f"{gpu_info.major}.{gpu_info.minor}")
_dict_append(output, f"GPU {gpu} Name", lambda: gpu_info.name)
_dict_append(output, f"GPU {gpu} Is integrated", lambda: bool(gpu_info.is_integrated))
_dict_append(output, f"GPU {gpu} Is multi GPU board", lambda: bool(gpu_info.is_multi_gpu_board))
_dict_append(output, f"GPU {gpu} Multi processor count", lambda: gpu_info.multi_processor_count)
_dict_append(output, f"GPU {gpu} Total memory (GB)", lambda: round(gpu_info.total_memory / 1024 ** 3, 1))
_dict_append(
output, f"GPU {gpu} Cached memory (GB)", lambda: round(torch.cuda.memory_reserved(gpu) / 1024 ** 3, 1)
)
_dict_append(
output, f"GPU {gpu} Allocated memory (GB)", lambda: round(torch.cuda.memory_allocated(gpu) / 1024 ** 3, 1)
)
_dict_append(output, f"GPU {gpu} CUDA capability (maj.min)", lambda: f"{gpu_info.major}.{gpu_info.minor}")

return output

Expand Down