Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
56 changes: 49 additions & 7 deletions monai/transforms/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -441,10 +441,52 @@ def __call__(self, img):
return data


# if __name__ == "__main__":
# img = np.array((1, 2, 3, 4)).reshape((1, 2, 2))
# rotator = RandRotate90(prob=0.0, max_k=3, axes=(1, 2))
# # rotator.set_random_state(1234)
# img_result = rotator(img)
# print(type(img))
# print(img_result)
@export
class RandZoom(Randomizable):
"""Randomly zooms input arrays with given probability within given zoom range.

Args:
prob (float): Probability of zooming.
min_zoom (float or sequence): Min zoom factor. Can be float or sequence same size as image.
max_zoom (float or sequence): Max zoom factor. Can be float or sequence same size as image.
order (int): order of interpolation. Default=3.
mode ('reflect', 'constant', 'nearest', 'mirror', 'wrap'): Determines how input is
extended beyond boundaries. Default: 'constant'.
cval (scalar, optional): Value to fill past edges. Default is 0.
use_gpu (bool): Should use cpu or gpu. Uses cupyx which doesn't support order > 1 and modes
'wrap' and 'reflect'. Defaults to cpu for these cases or if cupyx not found.
keep_size (bool): Should keep original size (pad if needed).
"""

def __init__(self, prob=0.1, min_zoom=0.9, max_zoom=1.1, order=3,
mode='constant', cval=0, prefilter=True,
use_gpu=False, keep_size=False):
if hasattr(min_zoom, '__iter__') and \
hasattr(max_zoom, '__iter__'):
assert len(min_zoom) == len(max_zoom), "min_zoom and max_zoom must have same length."
self.min_zoom = min_zoom
self.max_zoom = max_zoom
self.prob = prob
self.order = order
self.mode = mode
self.cval = cval
self.prefilter = prefilter
self.use_gpu = use_gpu
self.keep_size = keep_size

self._do_transform = False
self._zoom = None

def randomize(self):
self._do_transform = self.R.random_sample() < self.prob
if hasattr(self.min_zoom, '__iter__'):
self._zoom = (self.R.uniform(l, h) for l, h in zip(self.min_zoom, self.max_zoom))
else:
self._zoom = self.R.uniform(self.min_zoom, self.max_zoom)

def __call__(self, img):
self.randomize()
if not self._do_transform:
return img
zoomer = Zoom(self._zoom, self.order, self.mode, self.cval, self.prefilter, self.use_gpu, self.keep_size)
return zoomer(img)
76 changes: 76 additions & 0 deletions tests/test_random_zoom.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
# Copyright 2020 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest

import numpy as np
import importlib

from scipy.ndimage import zoom as zoom_scipy
from parameterized import parameterized

from monai.transforms import RandZoom
from tests.utils import NumpyImageTestCase2D


class ZoomTest(NumpyImageTestCase2D):

@parameterized.expand([
(0.9, 1.1, 3, 'constant', 0, True, False, False),
])
def test_correct_results(self, min_zoom, max_zoom, order, mode,
cval, prefilter, use_gpu, keep_size):
random_zoom = RandZoom(prob=1.0, min_zoom=min_zoom, max_zoom=max_zoom, order=order,
mode=mode, cval=cval, prefilter=prefilter, use_gpu=use_gpu,
keep_size=keep_size)
random_zoom.set_random_state(234)

zoomed = random_zoom(self.imt)
expected = zoom_scipy(self.imt, zoom=random_zoom._zoom, mode=mode,
order=order, cval=cval, prefilter=prefilter)

self.assertTrue(np.allclose(expected, zoomed))

@parameterized.expand([
(0.8, 1.2, 1, 'constant', 0, True)
])
def test_gpu_zoom(self, min_zoom, max_zoom, order, mode, cval, prefilter):
if importlib.util.find_spec('cupy'):
random_zoom = RandZoom(
prob=1.0, min_zoom=min_zoom, max_zoom=max_zoom, order=order,
mode=mode, cval=cval, prefilter=prefilter, use_gpu=True,
keep_size=False)
random_zoom.set_random_state(234)

zoomed = random_zoom(self.imt)
expected = zoom_scipy(self.imt, zoom=random_zoom._zoom, mode=mode, order=order,
cval=cval, prefilter=prefilter)

self.assertTrue(np.allclose(expected, zoomed))

def test_keep_size(self):
random_zoom = RandZoom(prob=1.0, min_zoom=0.6,
max_zoom=0.7, keep_size=True)
zoomed = random_zoom(self.imt)
self.assertTrue(np.array_equal(zoomed.shape, self.imt.shape))

@parameterized.expand([
("no_min_zoom", None, 1.1, 1, TypeError),
("invalid_order", 0.9, 1.1 , 's', AssertionError)
])
def test_invalid_inputs(self, _, min_zoom, max_zoom, order, raises):
with self.assertRaises(raises):
random_zoom = RandZoom(prob=1.0, min_zoom=min_zoom, max_zoom=max_zoom, order=order)
zoomed = random_zoom(self.imt)


if __name__ == '__main__':
unittest.main()