Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions monai/transforms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -553,6 +553,7 @@
nonzero,
percentile,
ravel,
repeat,
unravel_index,
where,
)
10 changes: 9 additions & 1 deletion monai/transforms/utils_pytorch_numpy_unification.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Sequence, Union
from typing import Optional, Sequence, Union

import numpy as np
import torch
Expand All @@ -35,6 +35,7 @@
"cumsum",
"isfinite",
"searchsorted",
"repeat",
]


Expand Down Expand Up @@ -301,3 +302,10 @@ def searchsorted(a: NdarrayOrTensor, v: NdarrayOrTensor, right=False, sorter=Non
ret = np.searchsorted(a.cpu().numpy(), v.cpu().numpy(), side, sorter) # type: ignore
ret, *_ = convert_to_dst_type(ret, a)
return ret


def repeat(a: NdarrayOrTensor, repeats: int, axis: Optional[int] = None):
"""`np.repeat` with equivalent implementation for torch (`repeat_interleave`)."""
if isinstance(a, np.ndarray):
return np.repeat(a, repeats, axis)
return torch.repeat_interleave(a, repeats, dim=axis)
2 changes: 1 addition & 1 deletion monai/visualize/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,5 +17,5 @@
plot_2d_or_3d_image,
)
from .occlusion_sensitivity import OcclusionSensitivity
from .utils import matshow3d
from .utils import blend_images, matshow3d
from .visualizer import default_upsampler
41 changes: 39 additions & 2 deletions monai/visualize/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,13 +13,17 @@

import numpy as np

from monai.config.type_definitions import NdarrayOrTensor
from monai.transforms.croppad.array import SpatialPad
from monai.transforms.utils import rescale_array
from monai.transforms.utils_pytorch_numpy_unification import repeat, where
from monai.utils.module import optional_import
from monai.utils.type_conversion import convert_data_type
from monai.utils.type_conversion import convert_data_type, convert_to_dst_type

plt, _ = optional_import("matplotlib", name="pyplot")
cm, _ = optional_import("matplotlib", name="cm")

__all__ = ["matshow3d"]
__all__ = ["matshow3d", "blend_images"]


def matshow3d(
Expand Down Expand Up @@ -122,3 +126,36 @@ def matshow3d(
if show:
plt.show()
return fig, im


def blend_images(
image: NdarrayOrTensor, label: NdarrayOrTensor, alpha: float = 0.5, cmap: str = "hsv", rescale_arrays: bool = True
):
"""Blend two images. Both should have the shape CHW[D].
The image may have C==1 or 3 channels (greyscale or RGB).
The label is expected to have C==1."""
if label.shape[0] != 1:
raise ValueError("Label should have 1 channel")
if image.shape[0] not in (1, 3):
raise ValueError("Image should have 1 or 3 channels")
# rescale arrays to [0, 1] if desired
if rescale_arrays:
image = rescale_array(image)
label = rescale_array(label)
# convert image to rgb (if necessary) and then rgba
if image.shape[0] == 1:
image = repeat(image, 3, axis=0)

def get_label_rgb(cmap: str, label: NdarrayOrTensor):
_cmap = cm.get_cmap(cmap)
label_np: np.ndarray
label_np, *_ = convert_data_type(label, np.ndarray) # type: ignore
label_rgb_np = _cmap(label_np[0])
label_rgb_np = np.moveaxis(label_rgb_np, -1, 0)[:3]
label_rgb, *_ = convert_to_dst_type(label_rgb_np, label)
return label_rgb

label_rgb = get_label_rgb(cmap, label)
w_image = where(label == 0, 1.0, alpha)
w_label = where(label == 0, 0.0, 1 - alpha)
return w_image * image + w_label * label_rgb
53 changes: 53 additions & 0 deletions tests/test_blend_images.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
# Copyright 2020 - 2021 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from unittest.case import skipUnless

import torch
from parameterized import parameterized

from monai.data.synthetic import create_test_image_2d, create_test_image_3d
from monai.transforms.utils_pytorch_numpy_unification import moveaxis
from monai.utils.module import optional_import
from monai.visualize.utils import blend_images
from tests.utils import TEST_NDARRAYS

plt, has_matplotlib = optional_import("matplotlib.pyplot")

TESTS = []
for p in TEST_NDARRAYS:
image, label = create_test_image_2d(100, 101)
TESTS.append((p(image), p(label)))

image, label = create_test_image_3d(100, 101, 102)
TESTS.append((p(image), p(label)))


@skipUnless(has_matplotlib, "Matplotlib required")
class TestBlendImages(unittest.TestCase):
@parameterized.expand(TESTS)
def test_blend(self, image, label):
blended = blend_images(image[None], label[None])
self.assertEqual(type(image), type(blended))
if isinstance(blended, torch.Tensor):
self.assertEqual(blended.device, image.device)
blended = blended.cpu().numpy()
self.assertEqual((3,) + image.shape, blended.shape)

blended = moveaxis(blended, 0, -1) # move RGB component to end
if blended.ndim > 3:
blended = blended[blended.shape[0] // 2]
plt.imshow(blended)


if __name__ == "__main__":
unittest.main()