Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions monai/networks/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,8 @@
one_hot,
pixelshuffle,
predict_segmentation,
replace_modules,
replace_modules_temp,
save_state,
slice_channels,
to_norm_affine,
Expand Down
104 changes: 103 additions & 1 deletion monai/networks/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,8 @@
import warnings
from collections import OrderedDict
from contextlib import contextmanager
from typing import Any, Callable, Dict, Mapping, Optional, Sequence, Union
from copy import deepcopy
from typing import Any, Callable, Dict, List, Mapping, Optional, Sequence, Tuple, Union

import torch
import torch.nn as nn
Expand All @@ -41,6 +42,8 @@
"save_state",
"convert_to_torchscript",
"meshgrid_ij",
"replace_modules",
"replace_modules_temp",
]


Expand Down Expand Up @@ -551,3 +554,102 @@ def meshgrid_ij(*tensors):
if pytorch_after(1, 10):
return torch.meshgrid(*tensors, indexing="ij")
return torch.meshgrid(*tensors)


def _replace_modules(
parent: torch.nn.Module,
name: str,
new_module: torch.nn.Module,
out: List[Tuple[str, torch.nn.Module]],
strict_match: bool = True,
match_device: bool = True,
) -> None:
"""
Helper function for :py:class:`monai.networks.utils.replace_modules`.
"""
if match_device:
devices = list({i.device for i in parent.parameters()})
# if only one device for whole of model
if len(devices) == 1:
new_module.to(devices[0])
idx = name.find(".")
# if there is "." in name, call recursively
if idx != -1:
parent_name = name[:idx]
parent = getattr(parent, parent_name)
name = name[idx + 1 :]
_out: List[Tuple[str, torch.nn.Module]] = []
_replace_modules(parent, name, new_module, _out)
# prepend the parent name
out += [(f"{parent_name}.{r[0]}", r[1]) for r in _out]
# no "." in module name, do the actual replacing
else:
if strict_match:
old_module = getattr(parent, name)
setattr(parent, name, new_module)
out += [(name, old_module)]
else:
for mod_name, _ in parent.named_modules():
if name in mod_name:
_replace_modules(parent, mod_name, deepcopy(new_module), out, strict_match=True)


def replace_modules(
parent: torch.nn.Module,
name: str,
new_module: torch.nn.Module,
strict_match: bool = True,
match_device: bool = True,
) -> List[Tuple[str, torch.nn.Module]]:
"""
Replace sub-module(s) in a parent module.

The name of the module to be replace can be nested e.g.,
`features.denseblock1.denselayer1.layers.relu1`. If this is the case (there are "."
in the module name), then this function will recursively call itself.

Args:
parent: module that contains the module to be replaced
name: name of module to be replaced. Can include ".".
new_module: `torch.nn.Module` to be placed at position `name` inside `parent`. This will
be deep copied if `strict_match == False` multiple instances are independent.
strict_match: if `True`, module name must `== name`. If false then
`name in named_modules()` will be used. `True` can be used to change just
one module, whereas `False` can be used to replace all modules with similar
name (e.g., `relu`).
match_device: if `True`, the device of the new module will match the model. Requires all
of `parent` to be on the same device.

Returns:
List of tuples of replaced modules. Element 0 is module name, element 1 is the replaced module.

Raises:
AttributeError: if `strict_match` is `True` and `name` is not a named module in `parent`.
"""
out: List[Tuple[str, torch.nn.Module]] = []
_replace_modules(parent, name, new_module, out, strict_match, match_device)
return out


@contextmanager
def replace_modules_temp(
parent: torch.nn.Module,
name: str,
new_module: torch.nn.Module,
strict_match: bool = True,
match_device: bool = True,
):
"""
Temporarily replace sub-module(s) in a parent module (context manager).

See :py:class:`monai.networks.utils.replace_modules`.
"""
replaced: List[Tuple[str, torch.nn.Module]] = []
try:
# replace
_replace_modules(parent, name, new_module, replaced, strict_match, match_device)
yield
finally:
# revert
for name, module in replaced:
_replace_modules(parent, name, module, [], strict_match=True, match_device=match_device)
97 changes: 97 additions & 0 deletions tests/test_replace_module.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,97 @@
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import unittest
from typing import Optional, Type

import torch
from parameterized import parameterized

from monai.networks.nets import DenseNet121
from monai.networks.utils import replace_modules, replace_modules_temp
from tests.utils import TEST_DEVICES

TESTS = []
for device in TEST_DEVICES:
for match_device in (True, False):
# replace 1
TESTS.append(("features.denseblock1.denselayer1.layers.relu1", True, match_device, *device))
# replace 1 (but not strict)
TESTS.append(("features.denseblock1.denselayer1.layers.relu1", False, match_device, *device))
# replace multiple
TESTS.append(("relu", False, match_device, *device))


class TestReplaceModule(unittest.TestCase):
def setUp(self):
self.net = DenseNet121(spatial_dims=2, in_channels=1, out_channels=3)
self.num_relus = self.get_num_modules(torch.nn.ReLU)
self.total = self.get_num_modules()
self.assertGreater(self.num_relus, 0)

def get_num_modules(self, mod: Optional[Type[torch.nn.Module]] = None) -> int:
m = [m for _, m in self.net.named_modules()]
if mod is not None:
m = [_m for _m in m if isinstance(_m, mod)]
return len(m)

def check_replaced_modules(self, name, match_device):
# total num modules should remain the same
self.assertEqual(self.total, self.get_num_modules())
num_relus_mod = self.get_num_modules(torch.nn.ReLU)
num_softmax = self.get_num_modules(torch.nn.Softmax)
# list of returned modules should be as long as number of softmax
self.assertEqual(self.num_relus, num_relus_mod + num_softmax)
if name == "relu":
# at least 2 softmaxes
self.assertGreaterEqual(num_softmax, 2)
else:
# one softmax
self.assertEqual(num_softmax, 1)
if match_device:
self.assertEqual(len(list({i.device for i in self.net.parameters()})), 1)

@parameterized.expand(TESTS)
def test_replace(self, name, strict_match, match_device, device):
self.net.to(device)
# replace module(s)
replaced = replace_modules(self.net, name, torch.nn.Softmax(), strict_match, match_device)
self.check_replaced_modules(name, match_device)
# number of returned modules should equal number of softmax modules
self.assertEqual(len(replaced), self.get_num_modules(torch.nn.Softmax))
# all replaced modules should be ReLU
for r in replaced:
self.assertIsInstance(r[1], torch.nn.ReLU)
# if a specfic module was named, check that the name matches exactly
if name == "features.denseblock1.denselayer1.layers.relu1":
self.assertEqual(replaced[0][0], name)

@parameterized.expand(TESTS)
def test_replace_context_manager(self, name, strict_match, match_device, device):
self.net.to(device)
with replace_modules_temp(self.net, name, torch.nn.Softmax(), strict_match, match_device):
self.check_replaced_modules(name, match_device)
# Check that model was correctly reverted
self.assertEqual(self.get_num_modules(), self.total)
self.assertEqual(self.get_num_modules(torch.nn.ReLU), self.num_relus)
self.assertEqual(self.get_num_modules(torch.nn.Softmax), 0)

def test_raises(self):
# name doesn't exist in module
with self.assertRaises(AttributeError):
replace_modules(self.net, "non_existent_module", torch.nn.Softmax(), strict_match=True)
with self.assertRaises(AttributeError):
with replace_modules_temp(self.net, "non_existent_module", torch.nn.Softmax(), strict_match=True):
pass


if __name__ == "__main__":
unittest.main()