Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 51 additions & 7 deletions monai/networks/nets/densenet.py
Original file line number Diff line number Diff line change
Expand Up @@ -296,16 +296,27 @@ class DenseNet121(DenseNet):

def __init__(
self,
spatial_dims: int,
in_channels: int,
out_channels: int,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 24, 16),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super().__init__(init_features=init_features, growth_rate=growth_rate, block_config=block_config, **kwargs)
super().__init__(
spatial_dims=spatial_dims,
in_channels=in_channels,
out_channels=out_channels,
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
if kwargs["spatial_dims"] > 2:
if spatial_dims > 2:
raise NotImplementedError(
"Parameter `spatial_dims` is > 2 ; currently PyTorch Hub does not"
"provide pretrained models for more than two spatial dimensions."
Expand All @@ -318,16 +329,27 @@ class DenseNet169(DenseNet):

def __init__(
self,
spatial_dims: int,
in_channels: int,
out_channels: int,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 32, 32),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super().__init__(init_features=init_features, growth_rate=growth_rate, block_config=block_config, **kwargs)
super().__init__(
spatial_dims=spatial_dims,
in_channels=in_channels,
out_channels=out_channels,
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
if kwargs["spatial_dims"] > 2:
if spatial_dims > 2:
raise NotImplementedError(
"Parameter `spatial_dims` is > 2 ; currently PyTorch Hub does not"
"provide pretrained models for more than two spatial dimensions."
Expand All @@ -340,16 +362,27 @@ class DenseNet201(DenseNet):

def __init__(
self,
spatial_dims: int,
in_channels: int,
out_channels: int,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 48, 32),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super().__init__(init_features=init_features, growth_rate=growth_rate, block_config=block_config, **kwargs)
super().__init__(
spatial_dims=spatial_dims,
in_channels=in_channels,
out_channels=out_channels,
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
if kwargs["spatial_dims"] > 2:
if spatial_dims > 2:
raise NotImplementedError(
"Parameter `spatial_dims` is > 2 ; currently PyTorch Hub does not"
"provide pretrained models for more than two spatial dimensions."
Expand All @@ -362,14 +395,25 @@ class DenseNet264(DenseNet):

def __init__(
self,
spatial_dims: int,
in_channels: int,
out_channels: int,
init_features: int = 64,
growth_rate: int = 32,
block_config: Sequence[int] = (6, 12, 64, 48),
pretrained: bool = False,
progress: bool = True,
**kwargs,
) -> None:
super().__init__(init_features=init_features, growth_rate=growth_rate, block_config=block_config, **kwargs)
super().__init__(
spatial_dims=spatial_dims,
in_channels=in_channels,
out_channels=out_channels,
init_features=init_features,
growth_rate=growth_rate,
block_config=block_config,
**kwargs,
)
if pretrained:
raise NotImplementedError("Currently PyTorch Hub does not provide densenet264 pretrained models.")

Expand Down