Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 14 additions & 3 deletions monai/networks/blocks/warp.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@ class Warp(nn.Module):
Warp an image with given dense displacement field (DDF).
"""

def __init__(self, mode=GridSampleMode.BILINEAR.value, padding_mode=GridSamplePadMode.BORDER.value):
def __init__(self, mode=GridSampleMode.BILINEAR.value, padding_mode=GridSamplePadMode.BORDER.value, jitter=False):
"""
For pytorch native APIs, the possible values are:

Expand All @@ -47,6 +47,11 @@ def __init__(self, mode=GridSampleMode.BILINEAR.value, padding_mode=GridSamplePa
- padding_mode: ``"zeros"``, ``"border"``, ``"reflection"``, 0, 1, ...

See also: :py:class:`monai.networks.layers.grid_pull`

- jitter: bool, default=False
Define reference grid on non-integer values
Reference: B. Likar and F. Pernus. A heirarchical approach to elastic registration
based on mutual information. Image and Vision Computing, 19:33-44, 2001.
"""
super().__init__()
# resolves _interp_mode for different methods
Expand Down Expand Up @@ -84,8 +89,9 @@ def __init__(self, mode=GridSampleMode.BILINEAR.value, padding_mode=GridSamplePa
self._padding_mode = GridSamplePadMode(padding_mode).value

self.ref_grid = None
self.jitter = jitter

def get_reference_grid(self, ddf: torch.Tensor) -> torch.Tensor:
def get_reference_grid(self, ddf: torch.Tensor, jitter: bool = False, seed: int = 0) -> torch.Tensor:
if (
self.ref_grid is not None
and self.ref_grid.shape[0] == ddf.shape[0]
Expand All @@ -96,6 +102,11 @@ def get_reference_grid(self, ddf: torch.Tensor) -> torch.Tensor:
grid = torch.stack(meshgrid_ij(*mesh_points), dim=0) # (spatial_dims, ...)
grid = torch.stack([grid] * ddf.shape[0], dim=0) # (batch, spatial_dims, ...)
self.ref_grid = grid.to(ddf)
if jitter:
# Define reference grid on non-integer values
with torch.random.fork_rng(enabled=seed):
torch.random.manual_seed(seed)
grid += torch.rand_like(grid)
self.ref_grid.requires_grad = False
return self.ref_grid

Expand All @@ -117,7 +128,7 @@ def forward(self, image: torch.Tensor, ddf: torch.Tensor):
f"Given input {spatial_dims}-d image shape {image.shape}, the input DDF shape must be {ddf_shape}, "
f"Got {ddf.shape} instead."
)
grid = self.get_reference_grid(ddf) + ddf
grid = self.get_reference_grid(ddf, jitter=self.jitter) + ddf
grid = grid.permute([0] + list(range(2, 2 + spatial_dims)) + [1]) # (batch, ..., spatial_dims)

if not USE_COMPILED: # pytorch native grid_sample
Expand Down