Skip to content
Draft
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
23 changes: 12 additions & 11 deletions monai/apps/nnunet/nnunetv2_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -167,12 +167,12 @@ def __init__(
else:
raise ValueError(f"{input_config} is not a valid file or dict")

self.nnunet_raw = self.input_info.pop("nnunet_raw", os.path.join(".", self.work_dir, "nnUNet_raw_data_base"))
self.nnunet_raw = self.input_info.pop("nnunet_raw", os.path.join(".", self.work_dir, "nnUNetv2_raw_data_base"))
self.nnunet_preprocessed = self.input_info.pop(
"nnunet_preprocessed", os.path.join(".", self.work_dir, "nnUNet_preprocessed")
"nnunet_preprocessed", os.path.join(".", self.work_dir, "nnUNetv2_preprocessed")
)
self.nnunet_results = self.input_info.pop(
"nnunet_results", os.path.join(".", self.work_dir, "nnUNet_trained_models")
"nnunet_results", os.path.join(".", self.work_dir, "nnUNetv2_trained_models")
)

if not os.path.exists(self.nnunet_raw):
Expand Down Expand Up @@ -824,7 +824,7 @@ def predict(
"""
os.environ["CUDA_VISIBLE_DEVICES"] = f"{gpu_id}"

from nnunetv2.inference.predict_from_raw_data import predict_from_raw_data
from nnunetv2.inference.predict_from_raw_data import nnUNetPredictor

n_processes_preprocessing = (
self.default_num_processes if num_processes_preprocessing < 0 else num_processes_preprocessing
Expand All @@ -833,19 +833,20 @@ def predict(
self.default_num_processes if num_processes_segmentation_export < 0 else num_processes_segmentation_export
)

predict_from_raw_data(
list_of_lists_or_source_folder=list_of_lists_or_source_folder,
output_folder=output_folder,
model_training_output_dir=model_training_output_dir,
use_folds=use_folds,
tile_step_size=tile_step_size,
predictor = nnUNetPredictor(
use_gaussian=use_gaussian,
use_mirroring=use_mirroring,
perform_everything_on_gpu=perform_everything_on_gpu,
verbose=verbose,
)
predictor.initialize_from_trained_model_folder(
model_training_output_dir=model_training_output_dir, use_folds=use_folds, checkpoint_name=checkpoint_name
)
predictor.predict_from_files(
list_of_lists_or_source_folder=list_of_lists_or_source_folder,
output_folder=output_folder,
save_probabilities=save_probabilities,
overwrite=overwrite,
checkpoint_name=checkpoint_name,
num_processes_preprocessing=n_processes_preprocessing,
num_processes_segmentation_export=n_processes_segmentation_export,
folder_with_segs_from_prev_stage=folder_with_segs_from_prev_stage,
Expand Down