Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions monai/losses/perceptual.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,6 +125,7 @@ def __init__(
self.perceptual_function = LPIPS(pretrained=pretrained, net=network_type, verbose=False)
self.is_fake_3d = is_fake_3d
self.fake_3d_ratio = fake_3d_ratio
self.channel_wise = channel_wise

def _calculate_axis_loss(self, input: torch.Tensor, target: torch.Tensor, spatial_axis: int) -> torch.Tensor:
"""
Expand Down
16 changes: 8 additions & 8 deletions tests/test_clip_intensity_percentiles.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,7 +31,7 @@ def test_hard_clipping_two_sided(self, p):
result = hard_clipper(im)
lower, upper = percentile(im, (5, 95))
expected = clip(convert_to_tensor(im), lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_high(self, p):
Expand All @@ -40,7 +40,7 @@ def test_hard_clipping_one_sided_high(self, p):
result = hard_clipper(im)
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_low(self, p):
Expand All @@ -49,7 +49,7 @@ def test_hard_clipping_one_sided_low(self, p):
result = hard_clipper(im)
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_soft_clipping_two_sided(self, p):
Expand Down Expand Up @@ -89,7 +89,7 @@ def test_channel_wise(self, p):
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[i], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[i], p(expected), type_test="tensor", rtol=1e-4, atol=0)

def test_ill_sharpness_factor(self):
with self.assertRaises(ValueError):
Expand Down Expand Up @@ -121,7 +121,7 @@ def test_hard_clipping_two_sided(self, p):
result = hard_clipper(im)
lower, upper = percentile(im, (5, 95))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_high(self, p):
Expand All @@ -130,7 +130,7 @@ def test_hard_clipping_one_sided_high(self, p):
result = hard_clipper(im)
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_low(self, p):
Expand All @@ -139,7 +139,7 @@ def test_hard_clipping_one_sided_low(self, p):
result = hard_clipper(im)
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result, p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_soft_clipping_two_sided(self, p):
Expand Down Expand Up @@ -179,7 +179,7 @@ def test_channel_wise(self, p):
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[i], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[i], p(expected), type_test="tensor", rtol=1e-4, atol=0)


if __name__ == "__main__":
Expand Down
19 changes: 9 additions & 10 deletions tests/test_clip_intensity_percentilesd.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,6 @@
from monai.transforms import ClipIntensityPercentilesd
from monai.transforms.utils import soft_clip
from monai.transforms.utils_pytorch_numpy_unification import clip, percentile
from monai.utils.type_conversion import convert_to_tensor
from tests.utils import TEST_NDARRAYS, NumpyImageTestCase2D, NumpyImageTestCase3D, assert_allclose


Expand All @@ -32,8 +31,8 @@ def test_hard_clipping_two_sided(self, p):
im = p(self.imt)
result = hard_clipper({key: im})
lower, upper = percentile(im, (5, 95))
expected = clip(convert_to_tensor(im), lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_high(self, p):
Expand All @@ -43,7 +42,7 @@ def test_hard_clipping_one_sided_high(self, p):
result = hard_clipper({key: im})
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_low(self, p):
Expand All @@ -53,7 +52,7 @@ def test_hard_clipping_one_sided_low(self, p):
result = hard_clipper({key: im})
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_soft_clipping_two_sided(self, p):
Expand Down Expand Up @@ -97,7 +96,7 @@ def test_channel_wise(self, p):
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-4, atol=0)

def test_ill_sharpness_factor(self):
key = "img"
Expand Down Expand Up @@ -135,7 +134,7 @@ def test_hard_clipping_two_sided(self, p):
result = hard_clipper({key: im})
lower, upper = percentile(im, (5, 95))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_high(self, p):
Expand All @@ -145,7 +144,7 @@ def test_hard_clipping_one_sided_high(self, p):
result = hard_clipper({key: im})
lower, upper = percentile(im, (0, 95))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_hard_clipping_one_sided_low(self, p):
Expand All @@ -155,7 +154,7 @@ def test_hard_clipping_one_sided_low(self, p):
result = hard_clipper({key: im})
lower, upper = percentile(im, (5, 100))
expected = clip(im, lower, upper)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[key], p(expected), type_test="tensor", rtol=1e-4, atol=0)

@parameterized.expand([[p] for p in TEST_NDARRAYS])
def test_soft_clipping_two_sided(self, p):
Expand Down Expand Up @@ -199,7 +198,7 @@ def test_channel_wise(self, p):
for i, c in enumerate(im):
lower, upper = percentile(c, (5, 95))
expected = clip(c, lower, upper)
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-7, atol=0)
assert_allclose(result[key][i], p(expected), type_test="tensor", rtol=1e-4, atol=0)


if __name__ == "__main__":
Expand Down