Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions monai/transforms/spatial/array.py
Original file line number Diff line number Diff line change
Expand Up @@ -1108,6 +1108,7 @@ def __call__(
_dtype,
lazy=lazy_,
transform_info=self.get_transform_info(),
**self.kwargs,
)

def inverse(self, data: torch.Tensor) -> torch.Tensor:
Expand Down
6 changes: 3 additions & 3 deletions monai/transforms/spatial/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -411,7 +411,7 @@ def rotate(img, angle, output_shape, mode, padding_mode, align_corners, dtype, l
return out.copy_meta_from(meta_info) if isinstance(out, MetaTensor) else out


def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, dtype, lazy, transform_info):
def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, dtype, lazy, transform_info, **kwargs):
"""
Functional implementation of zoom.
This function operates eagerly or lazily according to
Expand Down Expand Up @@ -450,7 +450,7 @@ def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, dtype,
if keep_size:
do_pad_crop = not np.allclose(output_size, im_shape)
if do_pad_crop and lazy: # update for lazy evaluation
_pad_crop = ResizeWithPadOrCrop(spatial_size=im_shape, mode=padding_mode)
_pad_crop = ResizeWithPadOrCrop(spatial_size=im_shape, mode=padding_mode, **kwargs)
_pad_crop.lazy = True
_tmp_img = MetaTensor([], affine=torch.eye(len(output_size) + 1))
_tmp_img.push_pending_operation({LazyAttr.SHAPE: list(output_size), LazyAttr.AFFINE: xform})
Expand Down Expand Up @@ -486,7 +486,7 @@ def zoom(img, scale_factor, keep_size, mode, padding_mode, align_corners, dtype,
out = out.copy_meta_from(meta_info)
do_pad_crop = not np.allclose(output_size, zoomed.shape[1:])
if do_pad_crop:
_pad_crop = ResizeWithPadOrCrop(spatial_size=img_t.shape[1:], mode=padding_mode)
_pad_crop = ResizeWithPadOrCrop(spatial_size=img_t.shape[1:], mode=padding_mode, **kwargs)
out = _pad_crop(out)
if get_track_meta() and do_pad_crop:
padcrop_xform = out.applied_operations.pop()
Expand Down
Loading