Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions acceleration/distributed_training/unet_evaluation_ddp.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,7 +62,7 @@
from monai.data import DataLoader, Dataset, create_test_image_3d, DistributedSampler, decollate_batch
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import Activations, AsChannelFirstd, AsDiscrete, Compose, LoadImaged, ScaleIntensityd
from monai.transforms import Activations, EnsureChannelFirstd, AsDiscrete, Compose, LoadImaged, ScaleIntensityd


def evaluate(args):
Expand Down Expand Up @@ -90,7 +90,7 @@ def evaluate(args):
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
]
)
Expand Down
12 changes: 10 additions & 2 deletions acceleration/distributed_training/unet_evaluation_horovod.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,15 @@
from monai.data import DataLoader, Dataset, create_test_image_3d, decollate_batch
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.transforms import Activations, AsChannelFirstd, AsDiscrete, Compose, LoadImaged, ScaleIntensityd, EnsureType
from monai.transforms import (
Activations,
EnsureChannelFirstd,
AsDiscrete,
Compose,
LoadImaged,
ScaleIntensityd,
EnsureType,
)


def evaluate(args):
Expand Down Expand Up @@ -86,7 +94,7 @@ def evaluate(args):
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
]
)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@
from monai.inferers import SlidingWindowInferer
from monai.transforms import (
Activationsd,
AsChannelFirstd,
EnsureChannelFirstd,
AsDiscreted,
Compose,
KeepLargestConnectedComponentd,
Expand Down Expand Up @@ -110,7 +110,7 @@ def evaluate(args):
val_transforms = Compose(
[
LoadImaged(keys=["image", "label"]),
AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
EnsureChannelFirstd(keys=["image", "label"], channel_dim=-1),
ScaleIntensityd(keys="image"),
]
)
Expand Down
4 changes: 2 additions & 2 deletions acceleration/distributed_training/unet_training_ddp.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,7 @@
import monai
from monai.data import DataLoader, Dataset, create_test_image_3d, DistributedSampler
from monai.transforms import (
AsChannelFirstd,
EnsureChannelFirstd,
Compose,
LoadImaged,
RandCropByPosNegLabeld,
Expand Down Expand Up @@ -99,7 +99,7 @@ def train(args):
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
RandCropByPosNegLabeld(
keys=["img", "seg"], label_key="seg", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
Expand Down
4 changes: 2 additions & 2 deletions acceleration/distributed_training/unet_training_horovod.py
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@
import monai
from monai.data import DataLoader, Dataset, create_test_image_3d
from monai.transforms import (
AsChannelFirstd,
EnsureChannelFirstd,
Compose,
LoadImaged,
RandCropByPosNegLabeld,
Expand Down Expand Up @@ -99,7 +99,7 @@ def train(args):
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
RandCropByPosNegLabeld(
keys=["img", "seg"], label_key="seg", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
Expand Down
4 changes: 2 additions & 2 deletions acceleration/distributed_training/unet_training_smartcache.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,7 +67,7 @@
import monai
from monai.data import DataLoader, SmartCacheDataset, create_test_image_3d, partition_dataset
from monai.transforms import (
AsChannelFirstd,
EnsureChannelFirstd,
Compose,
LoadImaged,
RandCropByPosNegLabeld,
Expand Down Expand Up @@ -105,7 +105,7 @@ def train(args):
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
RandCropByPosNegLabeld(
keys=["img", "seg"], label_key="seg", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
Expand Down
4 changes: 2 additions & 2 deletions acceleration/distributed_training/unet_training_workflows.py
Original file line number Diff line number Diff line change
Expand Up @@ -73,7 +73,7 @@
from monai.inferers import SimpleInferer
from monai.transforms import (
Activationsd,
AsChannelFirstd,
EnsureChannelFirstd,
AsDiscreted,
Compose,
KeepLargestConnectedComponentd,
Expand Down Expand Up @@ -111,7 +111,7 @@ def train(args):
train_transforms = Compose(
[
LoadImaged(keys=["image", "label"]),
AsChannelFirstd(keys=["image", "label"], channel_dim=-1),
EnsureChannelFirstd(keys=["image", "label"], channel_dim=-1),
ScaleIntensityd(keys="image"),
RandCropByPosNegLabeld(
keys=["image", "label"], label_key="label", spatial_size=[96, 96, 96], pos=1, neg=1, num_samples=4
Expand Down
4 changes: 2 additions & 2 deletions acceleration/threadbuffer_performance.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@
"from monai.data import DataLoader, Dataset, ThreadBuffer, create_test_image_2d\n",
"from monai.losses import Dice\n",
"from monai.networks.nets import UNet\n",
"from monai.transforms import AddChanneld, Compose, MapTransform\n",
"from monai.transforms import EnsureChannelFirstd, Compose, MapTransform\n",
"\n",
"monai.utils.set_determinism(seed=0)\n",
"\n",
Expand Down Expand Up @@ -99,7 +99,7 @@
"trans = Compose(\n",
" [\n",
" RandomGenerator(keys=(\"im\", \"seg\")),\n",
" AddChanneld(keys=(\"im\", \"seg\")),\n",
" EnsureChannelFirstd(keys=(\"im\", \"seg\"), channel_dim=\"no_channel\"),\n",
" ]\n",
")\n",
"\n",
Expand Down
3 changes: 0 additions & 3 deletions automl/DiNTS/search_dints.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,9 +81,6 @@
Transform,
AsDiscrete,
AsDiscreted,
AddChannel,
AddChanneld,
AsChannelFirstd,
CastToTyped,
Compose,
ConcatItemsd,
Expand Down
3 changes: 0 additions & 3 deletions automl/DiNTS/train_dints.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,9 +77,6 @@
Transform,
AsDiscrete,
AsDiscreted,
AddChannel,
AddChanneld,
AsChannelFirstd,
CastToTyped,
Compose,
ConcatItemsd,
Expand Down
12 changes: 6 additions & 6 deletions deepgrow/ignite/inference.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -76,10 +76,10 @@
" SpatialCropGuidanced,\n",
")\n",
"from monai.transforms import (\n",
" AsChannelFirstd,\n",
" EnsureChannelFirstd,\n",
" Spacingd,\n",
" LoadImaged,\n",
" AddChanneld,\n",
" Transposed,\n",
" NormalizeIntensityd,\n",
" EnsureTyped,\n",
" ToNumpyd,\n",
Expand Down Expand Up @@ -449,8 +449,8 @@
"slice_idx = original_slice_idx = data[\"foreground\"][0][2]\n",
"\n",
"pre_transforms = [\n",
" LoadImaged(keys=\"image\"),\n",
" AsChannelFirstd(keys=\"image\"),\n",
" LoadImaged(keys=\"image\", image_only=False),\n",
" Transposed(keys=\"image\", indices=[2, 0, 1]),\n",
" Spacingd(keys=\"image\", pixdim=pixdim, mode=\"bilinear\"),\n",
" AddGuidanceFromPointsd(\n",
" ref_image=\"image\",\n",
Expand All @@ -460,7 +460,7 @@
" spatial_dims=dimensions,\n",
" ),\n",
" Fetch2DSliced(keys=\"image\", guidance=\"guidance\"),\n",
" AddChanneld(keys=\"image\"),\n",
" EnsureChannelFirstd(keys=\"image\", channel_dim=\"no_channel\"),\n",
" SpatialCropGuidanced(keys=\"image\", guidance=\"guidance\", spatial_size=roi_size),\n",
" Resized(keys=\"image\", spatial_size=roi_size, mode=\"area\"),\n",
" ResizeGuidanced(guidance=\"guidance\", ref_image=\"image\"),\n",
Expand Down Expand Up @@ -500,7 +500,7 @@
" slice_idx = 0\n",
" if tname == \"LoadImaged\":\n",
" original_image = data[\"image\"]\n",
" if tname == \"AddChanneld\":\n",
" if tname == \"EnsureChannelFirstd\":\n",
" original_image_slice = data[\"image\"]"
]
},
Expand Down
16 changes: 8 additions & 8 deletions deepgrow/ignite/inference_3d.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -61,10 +61,10 @@
" SpatialCropGuidanced,\n",
")\n",
"from monai.transforms import (\n",
" AsChannelFirstd,\n",
" EnsureChannelFirstd,\n",
" Spacingd,\n",
" LoadImaged,\n",
" AddChanneld,\n",
" Transposed,\n",
" NormalizeIntensityd,\n",
" EnsureTyped,\n",
" ToNumpyd,\n",
Expand Down Expand Up @@ -177,8 +177,8 @@
"slice_idx = original_slice_idx = data[\"foreground\"][0][2]\n",
"\n",
"pre_transforms = [\n",
" LoadImaged(keys=\"image\"),\n",
" AsChannelFirstd(keys=\"image\"),\n",
" LoadImaged(keys=\"image\", image_only=False),\n",
" Transposed(keys=\"image\", indices=[2, 0, 1]),\n",
" Spacingd(keys=\"image\", pixdim=pixdim, mode=\"bilinear\"),\n",
" AddGuidanceFromPointsd(\n",
" ref_image=\"image\",\n",
Expand All @@ -187,7 +187,7 @@
" background=\"background\",\n",
" spatial_dims=dimensions,\n",
" ),\n",
" AddChanneld(keys=\"image\"),\n",
" EnsureChannelFirstd(keys=\"image\", channel_dim=\"no_channel\"),\n",
" SpatialCropGuidanced(keys=\"image\", guidance=\"guidance\", spatial_size=roi_size),\n",
" Resized(keys=\"image\", spatial_size=model_size, mode=\"area\"),\n",
" ResizeGuidanced(guidance=\"guidance\", ref_image=\"image\"),\n",
Expand Down Expand Up @@ -216,15 +216,15 @@
" image[:, :, slice_idx]\n",
" if tname in (\"LoadImaged\")\n",
" else image[slice_idx]\n",
" if tname in (\"AsChannelFirstd\", \"Spacingd\", \"AddGuidanceFromPointsd\")\n",
" if tname in (\"Transposed\", \"Spacingd\", \"AddGuidanceFromPointsd\")\n",
" else image[0][slice_idx]\n",
" )\n",
" label = None\n",
"\n",
" show_image(image, label, guidance, slice_idx)\n",
" if tname == \"LoadImaged\":\n",
" original_image = data[\"image\"]\n",
" if tname == \"AddChanneld\":\n",
" if tname == \"EnsureChannelFirstd\":\n",
" original_image_slice = data[\"image\"]\n",
" if tname == \"SpatialCropGuidanced\":\n",
" spatial_image = data[\"image\"]\n",
Expand Down Expand Up @@ -367,7 +367,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.13"
"version": "3.8.10"
},
"vscode": {
"interpreter": {
Expand Down
4 changes: 2 additions & 2 deletions deepgrow/ignite/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -47,7 +47,7 @@
from monai.networks.nets import BasicUNet, UNet
from monai.transforms import (
Activationsd,
AddChanneld,
EnsureChannelFirstd,
AsDiscreted,
Compose,
EnsureTyped,
Expand Down Expand Up @@ -91,7 +91,7 @@ def get_network(network, channels, dimensions):
def get_pre_transforms(roi_size, model_size, dimensions):
t = [
LoadImaged(keys=("image", "label")),
AddChanneld(keys=("image", "label")),
EnsureChannelFirstd(keys=("image", "label"), channel_dim="no_channel"),
SpatialCropForegroundd(keys=("image", "label"), source_key="label", spatial_size=roi_size),
Resized(keys=("image", "label"), spatial_size=model_size, mode=("area", "nearest")),
NormalizeIntensityd(keys="image", subtrahend=208.0, divisor=388.0),
Expand Down
6 changes: 3 additions & 3 deletions deployment/Triton/models/mednist_class/1/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@
from monai.transforms import Compose
from monai.transforms import (
Activations,
AddChannel,
EnsureChannelFirst,
AsDiscrete,
CropForeground,
CastToType,
Expand Down Expand Up @@ -121,8 +121,8 @@ def initialize(self, args):
[
LoadImage(reader="PILReader", image_only=True, dtype=np.float32),
ScaleIntensity(),
AddChannel(),
AddChannel(),
EnsureChannelFirst(channel_dim="no_channel"),
EnsureChannelFirst(channel_dim="no_channel"),
ToTensor(),
Lambda(func=lambda x: x.to(device=self.inference_device)),
]
Expand Down
6 changes: 3 additions & 3 deletions deployment/Triton/models/monai_covid/1/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,7 +49,7 @@
from monai.transforms import Compose
from monai.transforms import (
Activations,
AddChannel,
EnsureChannelFirst,
AsDiscrete,
CropForeground,
LoadImage,
Expand Down Expand Up @@ -110,11 +110,11 @@ def initialize(self, args):
self.pre_transforms = Compose(
[
LoadImage(reader="NibabelReader", image_only=True, dtype=np.float32),
AddChannel(),
EnsureChannelFirst(channel_dim="no_channel"),
ScaleIntensityRange(a_min=-1000, a_max=500, b_min=0.0, b_max=1.0, clip=True),
CropForeground(margin=5),
Resize([192, 192, 64], mode="area"),
AddChannel(),
EnsureChannelFirst(channel_dim="no_channel"),
ToTensor(),
Lambda(func=lambda x: x.to(device=self.inference_device)),
]
Expand Down
4 changes: 2 additions & 2 deletions deployment/bentoml/mednist_classifier_bentoml.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -379,7 +379,7 @@
"import torch\n",
"\n",
"from monai.transforms import (\n",
" AddChannel,\n",
" EnsureChannelFirst,\n",
" Compose,\n",
" Transform,\n",
" ScaleIntensity,\n",
Expand Down Expand Up @@ -414,7 +414,7 @@
"class MedNISTClassifier(bentoml.BentoService):\n",
" @cached_property\n",
" def transform(self):\n",
" return Compose([LoadStreamPIL(\"L\"), AddChannel(), ScaleIntensity(), EnsureType()])\n",
" return Compose([LoadStreamPIL(\"L\"), EnsureChannelFirst(channel_dim=\"no_channel\"), ScaleIntensity(), EnsureType()])\n",
"\n",
" @bentoml.api(input=FileInput(), output=JsonOutput(), batch=True)\n",
" def predict(self, file_streams: List[BinaryIO]) -> List[str]:\n",
Expand Down
8 changes: 4 additions & 4 deletions deployment/ray/mednist_classifier_ray.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@
"from monai.apps import download_url\n",
"from monai.config import print_config\n",
"from monai.transforms import (\n",
" AddChannel,\n",
" EnsureChannelFirst,\n",
" Compose,\n",
" ScaleIntensity,\n",
" EnsureType,\n",
Expand Down Expand Up @@ -148,7 +148,7 @@
"class MedNISTClassifier:\n",
" def __init__(self):\n",
" # create the transform for normalizing the image data\n",
" self.transform = Compose([AddChannel(), ScaleIntensity(), EnsureType()])\n",
" self.transform = Compose([EnsureChannelFirst(channel_dim=\"no_channel\"), ScaleIntensity(), EnsureType()])\n",
" # load the network on the CPU for simplicity and in eval mode\n",
" self.net = torch.jit.load(\"../bentoml/classifier.zip\", map_location=\"cpu\").eval()\n",
"\n",
Expand Down Expand Up @@ -358,7 +358,7 @@
"\n",
"from monai.config import print_config\n",
"from monai.transforms import (\n",
" AddChannel,\n",
" EnsureChannelFirst,\n",
" Compose,\n",
" ScaleIntensity,\n",
" EnsureType,\n",
Expand All @@ -371,7 +371,7 @@
"@serve.deployment\n",
"class MedNISTClassifier:\n",
" def __init__(self):\n",
" self.transform = Compose([AddChannel(), ScaleIntensity(), EnsureType()])\n",
" self.transform = Compose([EnsureChannelFirst(channel_dim=\"no_channel\"), ScaleIntensity(), EnsureType()])\n",
" self.net = torch.jit.load(\"../bentoml/classifier.zip\", map_location=\"cpu\").eval()\n",
"\n",
" async def __call__(self, request):\n",
Expand Down
Loading