Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 2 additions & 6 deletions bitsandbytes/functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -461,11 +461,7 @@ def get_transform_buffer(
state = (shape[::-1], to_order)

if to_order == "row" or to_order == "col":
if HIP_ENVIRONMENT and to_order == "col":
# row to col transformation transposes output shape, so change buffer allocation accordingly
return init_func(shape[::-1], dtype=dtype, device=device), state
else:
return init_func(shape, dtype=dtype, device=device), state
return init_func(shape, dtype=dtype, device=device), state
elif to_order == "col32":
# blocks of 32 columns (padded)
cols = 32 * ((cols + 31) // 32)
Expand Down Expand Up @@ -503,7 +499,7 @@ def nvidia_transform(
from_order = state[1]
if out is None:
out, new_state = get_transform_buffer(
state[0], A.dtype, A.device, to_order, state[1]
state[0], A.dtype, A.device, to_order, state[1], transpose
)
else:
new_state = (state[1], to_order)
Expand Down
22 changes: 19 additions & 3 deletions csrc/ops.hip
Original file line number Diff line number Diff line change
Expand Up @@ -383,7 +383,12 @@ template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void trans
hipblasLtOrder_t orderA = get_order<SRC>();
hipblasLtOrder_t orderOut = get_order<TARGET>();
int ldA = get_leading_dim<SRC>(dim1, dim2);
int ldOut = get_leading_dim<TARGET>(dim1, dim2);
int ldOut;
if (TARGET==COL && transpose) {
ldOut = dim2;
} else {
ldOut = get_leading_dim<TARGET>(dim1, dim2);
}

hipblasLtMatrixLayout_t A_desc = NULL, out_desc = NULL, B_desc = NULL;
T B = T(0);
Expand All @@ -395,13 +400,21 @@ template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void trans
{
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&A_desc, HIP_R_8I, dim1, dim2, ldA));
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&B_desc, HIP_R_8I, 0, 0, 0));
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&out_desc, HIP_R_8I, dim1, dim2, ldOut));
if (TARGET==COL && transpose) {
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&out_desc, HIP_R_8I, dim2, dim1, ldOut));
} else {
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&out_desc, HIP_R_8I, dim1, dim2, ldOut));
}
}
else if(DTYPE == 32)
{
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&A_desc, HIP_R_32I, dim1, dim2, ldA));
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&B_desc, HIP_R_32I, 0, 0, 0));
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&out_desc, HIP_R_32I, dim1, dim2, ldOut));
if (TARGET==COL && transpose) {
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&out_desc, HIP_R_32I, dim2, dim1, ldOut));
} else {
checkHipblasStatus(hipblasLtMatrixLayoutCreate(&out_desc, HIP_R_32I, dim1, dim2, ldOut));
}
}
else
{
Expand All @@ -424,6 +437,9 @@ template <typename T, int SRC, int TARGET, bool transpose, int DTYPE> void trans
}

template void transform<int8_t, ROW, COL, false, 8>(hipblasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL, true, 8>(hipblasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL, false, 32>(hipblasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL, true, 32>(hipblasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, ROW, false, 8>(hipblasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int8_t, ROW, COL32, false, 8>(hipblasLtHandle_t ltHandle, int8_t *A, int8_t *out, int dim1, int dim2);
template void transform<int32_t, ROW, COL32, false, 32>(hipblasLtHandle_t ltHandle, int32_t *A, int32_t *out, int dim1, int dim2);
Expand Down
6 changes: 6 additions & 0 deletions csrc/pythonInterface.c
Original file line number Diff line number Diff line change
Expand Up @@ -158,6 +158,9 @@ void transform_##fbits##_##fsrc##_to_##ftrgt##_##ftranspose(hipblasLtHandle_t lt
#endif

MAKE_FUNC_TRANSFORM(8, row, col, n, int8_t, ROW, COL, false, 8);
MAKE_FUNC_TRANSFORM(8, row, col, t, int8_t, ROW, COL, true, 8);
MAKE_FUNC_TRANSFORM(32, row, col, n, int32_t, ROW, COL, false, 32);
MAKE_FUNC_TRANSFORM(32, row, col, t, int32_t, ROW, COL, true, 32);
MAKE_FUNC_TRANSFORM(8, row, row, n, int8_t, ROW, ROW, false, 8);
MAKE_FUNC_TRANSFORM(8, row, col32, n, int8_t, ROW, COL32, false, 8);
MAKE_FUNC_TRANSFORM(32, row, col32, n, int32_t, ROW, COL32, false, 32);
Expand Down Expand Up @@ -406,6 +409,9 @@ extern "C"


MAKE_FUNC_CTRANSFORM(8, row, col, n, int8_t, ROW, COL, false, 8)
MAKE_FUNC_CTRANSFORM(8, row, col, t, int8_t, ROW, COL, true, 8)
MAKE_FUNC_CTRANSFORM(32, row, col, n, int32_t, ROW, COL, false, 32)
MAKE_FUNC_CTRANSFORM(32, row, col, t, int32_t, ROW, COL, true, 32)
MAKE_FUNC_CTRANSFORM(8, row, row, n, int8_t, ROW, ROW, false, 8)
MAKE_FUNC_CTRANSFORM(8, row, col32, n, int8_t, ROW, COL32, false, 8)
MAKE_FUNC_CTRANSFORM(32, row, col32, n, int32_t, ROW, COL32, false, 32)
Expand Down
21 changes: 9 additions & 12 deletions tests/test_functional.py
Original file line number Diff line number Diff line change
Expand Up @@ -719,19 +719,16 @@ def test_igemmlt_int(dim1, dim2, dim3, dim4, dims, ldb):
C3, S = F.nvidia_transform(C2, "row", state=SC)
torch.testing.assert_close(C1, C3.float())

# Since ROCm supports row to col transformation only which is same as transpose,
# skipping this for HIP environment
if not HIP_ENVIRONMENT:
## transpose
B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to(
torch.int8
)
C1 = torch.matmul(A.float(), B.float())
## transpose
B = torch.randint(-128, 127, size=(dim3, dim4), device="cuda").to(
torch.int8
)
C1 = torch.matmul(A.float(), B.float())

B2t, SBt = F.transform(B, "col_turing", transpose=True)
C2, SC = F.igemmlt(A2, B2t, SA, SBt)
C3, S = F.nvidia_transform(C2, "row", state=SC)
torch.testing.assert_close(C1, C3.float())
B2t, SBt = F.transform(B, "col_turing", transpose=True)
C2, SC = F.igemmlt(A2, B2t, SA, SBt)
C3, S = F.nvidia_transform(C2, "row", state=SC)
torch.testing.assert_close(C1, C3.float())


dim1 = [32]
Expand Down