Skip to content

RPIDIAL/CAMOS

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

12 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CAMOS: Conditional Autoregressive Modeling for Orthognathic Surgery

Facial Appearance Prediction with Conditional Multi-scale Autoregressive Modeling for Orthognathic Surgical Planning
Jungwook Lee, Xuanang Xu, Daeseung Kim, Tianshu Kuang, Hannah H. Deng, Xinrui Song, Yasmine Soubra, Rohan Dharia, Michael A.K. Liebschner, Jaime Gateno, Pingkun Yan


Overview

CAMOS is a deep learning framework for predicting patient-specific optimal 3D facial appearance from preoperative face for orthognathic surgical planning.
It uses a hierarchical coarse-to-fine multi-scale autoregressive approach, pretrained on a large-scale dataset of 44,602 normal faces and fine-tuned on in-house patient dataset, to produce realistic and harmonized facial predictions.


Key Features

  • Hierarchical Multi-scale Prediction: Coarse-to-fine refinement for better detail and facial harmony.
  • Large-scale Pretraining: Robust generative modeling on diverse facial demographics.
  • Conditional Generation: Patient-specific prediction using preoperative facial landmarks.
  • 3D Surface Reconstruction: Outputs full 3D facial meshes for surgical planning. CAMOS Workflow

Method

  1. Multi-scale VQ-VAE extracts hierarchical latent tokens from facial landmarks.
  2. Visual Autoregressive Modeling (VAR) predicts next-scale tokens from coarse to fine.
  3. Conditional Fine-tuning integrates patient preoperative data.
  4. Thin-Plate Spline (TPS) reconstructs the 3D surface.

CAMOS Detailed


Dataset

  • Pretraining: DAD-3DHeads, Headspace, FaceScape, BU-3DFE (total 44,602 faces).
  • Fine-tuning: 86 orthognathic surgery patients (in-house dataset).

Due to privacy concerns, patient data is not publicly released.


Results

  • Chamfer Distance: 1.91 mm (lips), 2.37 mm (chin) – best among compared methods.
  • Generates realistic, patient-specific postoperative predictions with fine details and correct alignment.

Training

To train CAMOS model:

python train.py \
  --fold 0 \
  --experiment_dir EXPERIMENT_FOLDER \
  --mvqvae_path VQVAE_PATH \
  --pretrained_path CAMOS_PRETRAIN_PATH \
  --data_path1 DATA_PATH1 \
  --data_path2 DATA_PATH2

Inference

To run inference and save predictions to JSON:

python inference.py \
  --mvqvae_path VQVAE_PATH \
  --cvar_path MODEL_PATH \
  --data_path1 DATA_PATH1 \
  --data_path2 DATA_PATH2 \
  --save_path SAVE_FOLDER

Citation


About

MICCAI'25 - CAMOS: Conditional Autoregressive Modeling for Orthognathic Surgery

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages