Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 3 additions & 3 deletions main.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
help='accuracy evaluation function')
parser.add_argument('-epochs', default=50, required=False,
help='number of epochs')
parser.add_argument('-pretrain', default=False, required=False,
parser.add_argument('-pretrain', default=0, required=False,
help='pretrain on ImageNet?')
parser.add_argument('-step_size', default=7, required=False,
help='number of epochs between decreasing learning rate')
Expand Down Expand Up @@ -50,7 +50,7 @@
"loss_fn": loss.create(args.loss_fn),
"acc_fn": accuracy.create(args.acc_fn),
"epochs": int(args.epochs),
"pretraining": bool(args.pretrain),
"pretrained": int(args.pretrain),
"step_size": int(args.step_size),
"feature_extracting": bool(args.feature_extracting),
"learning_rate": float(args.lr),
Expand All @@ -63,7 +63,7 @@
model_param["loss_fn"],
model_param["acc_fn"],
model_param["epochs"],
model_param["pretraining"],
model_param["pretrained"],
model_param["step_size"],
model_param["feature_extracting"],
model_param["learning_rate"],
Expand Down
8 changes: 5 additions & 3 deletions models/alexnet.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,14 @@
from torchvision import models
import torch
from models.model import Model
from models.save_features import SaveFeatures

class Alexnet(Model):
def __init__(self, loaders, loss_fn, acc_fn, epochs=20, pretraining=True, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="Alexnet"):
alexnet = models.alexnet(pretrained=pretraining)
def __init__(self, loaders, loss_fn, acc_fn, epochs=20, pretrained=0, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="Alexnet"):
alexnet = models.alexnet(pretrained=True)

super().__init__(loaders, alexnet, loss_fn, acc_fn, epochs, pretraining, step_size, feature_extracting, lr, output_layers, name=name)
super().__init__(loaders, alexnet, loss_fn, acc_fn, epochs, pretrained, step_size, feature_extracting, lr, output_layers, name=name)
self.activated_features = SaveFeatures(self.model.classifier[6])

def get_optimizer(self, lr):
num_ftrs = self.model.classifier[6].in_features
Expand Down
8 changes: 5 additions & 3 deletions models/googlenet.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,14 @@
from torchvision import models
import torch
from models.model import Model
from models.save_features import SaveFeatures

class Googlenet(Model):
def __init__(self, loaders, loss_fn, acc_fn, epochs=20, pretraining=True, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="Googlenet"):
googlenet = models.googlenet(pretrained=pretraining)
def __init__(self, loaders, loss_fn, acc_fn, epochs=20, pretrained=0, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="Googlenet"):
googlenet = models.googlenet(pretrained=True)

super().__init__(loaders, googlenet, loss_fn, acc_fn, epochs, pretraining, step_size, feature_extracting, lr, output_layers, name=name)
super().__init__(loaders, googlenet, loss_fn, acc_fn, epochs, pretrained, step_size, feature_extracting, lr, output_layers, name=name)
# self.activated_features = SaveFeatures(self.model._modules.get('b5'))

def get_optimizer(self, lr):
num_ftrs = self.model.fc.in_features
Expand Down
12 changes: 10 additions & 2 deletions models/model.py
Original file line number Diff line number Diff line change
@@ -1,11 +1,13 @@
from torch.optim import lr_scheduler
import torch
import time
import logging

from models.train import train_model
from models.save_features import SaveFeatures

class Model():
def __init__(self, dataloaders, model, loss_fn, acc_fn, epochs=20, pretraining=True, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="model"):
def __init__(self, dataloaders, model, loss_fn, acc_fn, epochs=20, pretrained=0, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="model"):
self.epochs = epochs

self.loss_fn = loss_fn
Expand All @@ -23,11 +25,17 @@ def __init__(self, dataloaders, model, loss_fn, acc_fn, epochs=20, pretraining=T
self.optimizer = self.get_optimizer(lr)
self.scheduler = lr_scheduler.StepLR(self.optimizer, step_size=step_size, gamma=0.1)

# for m in self.model.modules():
# self.init_params(m)

def train(self):
start_time = time.time()
train_model(self.loaders, self.model, self.loss_fn, self.acc_fn, self.optimizer, self.scheduler, self.epochs, name=self.name)
logging.info('Training time: {:10f} minutes'.format((time.time()-start_time)/60))

def get_optimizer(self, lr):
return optim.SGD(self.model.parameters(), lr=lr, momentum=0.9)


def init_params(self, m):
if type(m)==torch.nn.Linear or type(m)==torch.nn.Conv2d:
m.weight.data=torch.randn(m.weight.size())*.01#Random weight initialisation
8 changes: 5 additions & 3 deletions models/resnet.py
Original file line number Diff line number Diff line change
@@ -1,12 +1,14 @@
from torchvision import models
import torch
from models.model import Model
from models.save_features import SaveFeatures

class Resnet(Model):
def __init__(self, loaders, loss_fn, acc_fn, epochs=20, pretraining=True, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="Resnet"):
resnet = models.resnet18(pretrained=pretraining)
def __init__(self, loaders, loss_fn, acc_fn, epochs=20, pretrained=0, step_size=7, feature_extracting=False, lr=0.01, output_layers=256, name="Resnet"):
resnet = models.resnet18(pretrained=True)

super().__init__(loaders, resnet, loss_fn, acc_fn, epochs, pretraining, step_size, feature_extracting, lr, output_layers, name=name)
super().__init__(loaders, resnet, loss_fn, acc_fn, epochs, pretrained, step_size, feature_extracting, lr, output_layers, name=name)
self.activated_features = SaveFeatures(self.model._modules.get('layer4'))

def get_optimizer(self, lr):
num_ftrs = self.model.fc.in_features
Expand Down
5 changes: 5 additions & 0 deletions models/save_features.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
class SaveFeatures():
features=None
def __init__(self, m): self.hook = m.register_forward_hook(self.hook_fn)
def hook_fn(self, module, input, output): self.features = ((output.cpu()).data).numpy()
def remove(self): self.hook.remove()
2 changes: 2 additions & 0 deletions models/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -49,6 +49,8 @@ def train_model(dataloaders, model, criterion, acc_fn, optimizer, scheduler, num

images, labels = data
outputs = model(torch.stack(images).to(device))
if model.__class__.__name__ is "GoogLeNet":
outputs = outputs.logits
labels = torch.IntTensor(labels)

loss = criterion(outputs, labels)
Expand Down