Skip to content
Empty file.
208 changes: 208 additions & 0 deletions examples/terran/marine_faceoff/atari_breakout.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,208 @@
import os
import sys

sys.path.append(os.path.join(os.path.dirname(__file__), "../../.."))

# --------------------------------------------------------------------------------------
## Setup ##
# ========#
from baselines.common.atari_wrappers import make_atari, wrap_deepmind
import numpy as np
import tensorflow as tf
from tensorflow import keras
from tensorflow.keras import layers

# Configuration paramaters for the whole setup
seed = 42
gamma = 0.99 # Discount factor for past rewards
epsilon = 1.0 # Epsilon greedy parameter
epsilon_min = 0.1 # Minimum epsilon greedy parameter
epsilon_max = 1.0 # Maximum epsilon greedy parameter
epsilon_interval = (
epsilon_max - epsilon_min
) # Rate at which to reduce chance of random action being taken
batch_size = 32 # Size of batch taken from replay buffer
max_steps_per_episode = 10000

# Use the Baseline Atari environment because of Deepmind helper functions
env = make_atari("BreakoutNoFrameskip-v4")
# Warp the frames, grey scale, stake four frame and scale to smaller ratio
env = wrap_deepmind(env, frame_stack=True, scale=True)
env.seed(seed)
# --------------------------------------------------------------------------------------

## Implement the Deep Q-Network ##
# ===============================#

num_actions = 4


def create_q_model():
# Network defined by the Deepmind paper
inputs = layers.Input(shape=(84, 84, 4,))

# Convolutions on the frames on the screen
layer1 = layers.Conv2D(32, 8, strides=4, activation="relu")(inputs)
layer2 = layers.Conv2D(64, 4, strides=2, activation="relu")(layer1)
layer3 = layers.Conv2D(64, 3, strides=1, activation="relu")(layer2)

layer4 = layers.Flatten()(layer3)

layer5 = layers.Dense(512, activation="relu")(layer4)
action = layers.Dense(num_actions, activation="linear")(layer5)

return keras.Model(inputs=inputs, outputs=action)


# The first model makes the predictions for Q-values which are used to
# make a action.
model = create_q_model()
# Build a target model for the prediction of future rewards.
# The weights of a target model get updated every 10000 steps thus when the
# loss between the Q-values is calculated the target Q-value is stable.
model_target = create_q_model()
# --------------------------------------------------------------------------------------


## Train ##
# ========#
# In the Deepmind paper they use RMSProp however then Adam optimizer
# improves training time
optimizer = keras.optimizers.Adam(learning_rate=0.00025, clipnorm=1.0)

# Experience replay buffers
action_history = []
state_history = []
state_next_history = []
rewards_history = []
done_history = []
episode_reward_history = []
running_reward = 0
episode_count = 0
frame_count = 0
# Number of frames to take random action and observe output
epsilon_random_frames = 50000
# Number of frames for exploration
epsilon_greedy_frames = 1000000.0
# Maximum replay length
# Note: The Deepmind paper suggests 1000000 however this causes memory issues
max_memory_length = 100000
# Train the model after 4 actions
update_after_actions = 4
# How often to update the target network
update_target_network = 10000
# Using huber loss for stability
loss_function = keras.losses.Huber()

while True: # Run until solved
state = np.array(env.reset())
episode_reward = 0

for timestep in range(1, max_steps_per_episode):
# env.render(); Adding this line would show the attempts
# of the agent in a pop up window.
frame_count += 1

# Use epsilon-greedy for exploration
if frame_count < epsilon_random_frames or epsilon > np.random.rand(1)[0]:
# Take random action
action = np.random.choice(num_actions)
else:
# Predict action Q-values
# From environment state
state_tensor = tf.convert_to_tensor(state)
state_tensor = tf.expand_dims(state_tensor, 0)
action_probs = model(state_tensor, training=False)
# Take best action
action = tf.argmax(action_probs[0]).numpy()

# Decay probability of taking random action
epsilon -= epsilon_interval / epsilon_greedy_frames
epsilon = max(epsilon, epsilon_min)

# Apply the sampled action in our environment
state_next, reward, done, _ = env.step(action)
state_next = np.array(state_next)

episode_reward += reward

# Save actions and states in replay buffer
action_history.append(action)
state_history.append(state)
state_next_history.append(state_next)
done_history.append(done)
rewards_history.append(reward)
state = state_next

# Update every fourth frame and once batch size is over 32
if frame_count % update_after_actions == 0 and len(done_history) > batch_size:
# Get indices of samples for replay buffers
indices = np.random.choice(range(len(done_history)), size=batch_size)

# Using list comprehension to sample from replay buffer
state_sample = np.array([state_history[i] for i in indices])
state_next_sample = np.array([state_next_history[i] for i in indices])
rewards_sample = [rewards_history[i] for i in indices]
action_sample = [action_history[i] for i in indices]
done_sample = tf.convert_to_tensor(
[float(done_history[i]) for i in indices]
)

# Build the updated Q-values for the sampled future states
# Use the target model for stability
future_rewards = model_target.predict(state_next_sample)
# Q value = reward + discount factor * expected future reward
updated_q_values = rewards_sample + gamma * tf.reduce_max(
future_rewards, axis=1
)

# If final frame set the last value to -1
updated_q_values = updated_q_values * (1 - done_sample) - done_sample

# Create a mask so we only calculate loss on the updated Q-values
masks = tf.one_hot(action_sample, num_actions)

with tf.GradientTape() as tape:
# Train the model on the states and updated Q-values
q_values = model(state_sample)

# Apply the masks to the Q-values to get the Q-value for action taken
q_action = tf.reduce_sum(tf.multiply(q_values, masks), axis=1)
# Calculate loss between new Q-value and old Q-value
loss = loss_function(updated_q_values, q_action)

# Backpropagation
grads = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(grads, model.trainable_variables))

if frame_count % update_target_network == 0:
# update the the target network with new weights
model_target.set_weights(model.get_weights())
# Log details
template = "running reward: {:.2f} at episode {}, frame count {}"
print(template.format(running_reward, episode_count, frame_count))

# Limit the state and reward history
if len(rewards_history) > max_memory_length:
del rewards_history[:1]
del state_history[:1]
del state_next_history[:1]
del action_history[:1]
del done_history[:1]

if done:
break

# Update running reward to check condition for solving
episode_reward_history.append(episode_reward)
if len(episode_reward_history) > 100:
del episode_reward_history[:1]
running_reward = np.mean(episode_reward_history)

episode_count += 1
print(f"episode count is {episode_count}")

if running_reward > 40: # Condition to consider the task solved
print("Solved at episode {}!".format(episode_count))
break
# --------------------------------------------------------------------------------------
Loading