Skip to content

YedTheEmo/yen

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YEN | Unified Stock Analysis Workflow Manager

A comprehensive Python-based stock analysis suite that combines Volume Spread Analysis (VSA), volume anomaly detection, AI-powered reporting, and stock screening into unified workflows. YEN eliminates the complexity of managing individual analysis scripts by providing predefined workflows that chain together multiple analysis tools.

Features

Core Workflows

  • VSA Analysis Pipeline: Complete Volume Spread Analysis with data export, cleaning, and visualization
  • Volume Anomaly Detection: Statistical analysis to identify unusual volume patterns
  • AI-Powered Analysis: Generate comprehensive analysis reports using OpenAI's GPT models
  • Stock Screening: Filter stocks by institutional ownership, volatility, and volume criteria
  • Batch Processing: Process multiple tickers through any workflow
  • Daily Market Roundup: Real-time price/volume movement tracking with Kabu

Analysis Tools

  • Volume Spread Analysis (VSA): Detect high-probability trading signals based on volume-price relationships
  • Statistical Anomaly Detection: Z-score based volume anomaly identification
  • Technical Data Export: Multi-timeframe OHLCV data extraction from Yahoo Finance
  • Data Cleaning & Preprocessing: Automated CSV cleaning and formatting
  • Interactive Visualizations: Plot generation for signals and anomalies

Project Structure

yen/
├── yen.py                     # Main workflow manager
├── core/                       # Core analysis scripts
│   ├── data_exporter.py       # OHLCV data fetching from Yahoo Finance
│   ├── clean_csv_data.py      # CSV data cleaning and preprocessing
│   ├── vsa.py                 # Volume Spread Analysis engine
│   ├── detect_volume_anomalies.py  # Statistical volume anomaly detection
│   ├── report_generator.py    # AI-powered analysis report generation
│   ├── stock_scanner.py       # Stock screening by fundamental criteria
│   ├── prompt_generator.py    # VPA analysis prompt generation
│   ├── prompt_generator_v2.py # Multi-ticker prompt generation
│   ├── txt_to_csv.py         # Data format conversion utility
│   ├── kabu.py               # Daily price/volume movement tracker
│   ├── kabu_visualizer.py    # PNG visualization generator
│   └── kabu_visualizer_html.py # HTML report generator
├── data_exports/             # Exported CSV data storage
├── vsa_outputs/             # VSA analysis results
└── requirements.txt         # Python dependencies

Installation

  1. Clone the Repository

    git clone https://www.github.com/YedTheEmo/yen.git
    cd yen
  2. Create Virtual Environment

    python -m venv venv
    source venv/bin/activate  # Linux/Mac
    # or
    venv\Scripts\activate     # Windows
  3. Install Dependencies

    pip install -r requirements.txt
  4. Configure OpenAI API (Optional) For AI-powered analysis, create config.json:

    {
        "openai_api_key": "your-openai-api-key-here"
    }

Usage Examples

VSA Analysis Pipeline

Complete Volume Spread Analysis with visualization:

python yen.py vsa-analysis AAPL 2024-01-01 2024-12-31 --plot --threshold 1.0

Volume Anomaly Detection

Detect unusual volume patterns:

python yen.py volume-anomalies TSLA 2024-01-01 2024-12-31 --threshold 2.0

AI-Powered Analysis Report

Generate comprehensive AI analysis:

python yen.py ai-analysis NVDA 2024-01-01 2024-12-31 --intervals 1wk 1d 1h

Complete Analysis Suite

Run all analyses in sequence:

python yen.py full-analysis MSFT 2024-01-01 2024-12-31

Stock Screening

Filter stocks by criteria:

python yen.py stock-screening 10.0 0.3 1000000 --output-file filtered_stocks.txt

Batch Processing

Process multiple tickers from file:

python yen.py batch-analysis tickers.txt 2024-01-01 2024-12-31 vsa --plot

Daily Market Roundup (Kabu)

Generate daily price/volume summary:

python kabu/kabu.py --tickers tickers.txt
python kabu/kabu_visualizer_html.py --report daily_report.json --output daily_report.html

🔧 Individual Script Usage

Data Export

python yen/data_exporter.py AAPL 2024-01-01 2024-12-31 --intervals 1d 1h

VSA Analysis

python yen/vsa.py -f data.csv -t 1.0 0.5 -p -d 5

Volume Anomaly Detection

python yen/detect_volume_anomalies.py input.csv output.csv --threshold 2.0

Stock Screening

python yen/stock_scanner.py 10.0 0.3 1000000 --ticker-file sp500.txt --resume

Workflow Details

VSA Analysis Pipeline

  1. Data Export: Fetch OHLCV data from Yahoo Finance
  2. Data Cleaning: Remove headers and handle missing data
  3. VSA Analysis: Apply Volume Spread Analysis algorithms
  4. Visualization: Generate signal plots and charts

Volume Anomaly Detection

  1. Data Export & Cleaning: Prepare clean OHLCV dataset
  2. Statistical Analysis: Calculate volume z-scores
  3. Anomaly Identification: Flag volumes exceeding threshold
  4. Report Generation: Export anomaly summary to CSV

AI Analysis Workflow

  1. Data Collection: Multi-timeframe data aggregation
  2. Prompt Generation: Create structured analysis prompts
  3. AI Processing: Send to OpenAI API for analysis
  4. Report Formatting: Generate HTML/Markdown reports

Requirements

  • Python 3.7+
  • pandas
  • numpy
  • yfinance
  • matplotlib
  • requests
  • openai (for AI analysis)

Use Cases

  • Day Trading: VSA signal detection for intraday opportunities
  • Swing Trading: Multi-timeframe analysis for position entries
  • Risk Management: Volume anomaly alerts for unusual market activity
  • Portfolio Screening: Filter stocks by fundamental and technical criteria
  • Market Research: AI-powered analysis of market trends and patterns
  • Daily Monitoring: Automated daily market roundup and alerts

Important Notes

  • API Limits: OpenAI API usage incurs costs based on token consumption
  • Data Sources: Uses Yahoo Finance via yfinance library
  • File Management: Temporary files are automatically cleaned up
  • Error Handling: Graceful failure recovery with detailed error messages
  • Resume Support: Stock screening supports resume functionality for large datasets

Troubleshooting

Argument Order Issues

Always place optional arguments after positional arguments:

# Correct
python yen.py vsa-analysis AAPL 2024-01-01 2024-12-31 --intervals 1d

# Incorrect
python yen.py vsa-analysis --intervals 1d AAPL 2024-01-01 2024-12-31

Missing Config File

If report_generator.py fails, ensure config.json exists with your OpenAI API key.

Data Export Issues

Check internet connectivity and verify ticker symbols are valid.


YEN - Your comprehensive toolkit for professional stock market analysis and trading signal generation.

About

Stocks Volume Price Analysis with AI

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages