A comprehensive Python-based stock analysis suite that combines Volume Spread Analysis (VSA), volume anomaly detection, AI-powered reporting, and stock screening into unified workflows. YEN eliminates the complexity of managing individual analysis scripts by providing predefined workflows that chain together multiple analysis tools.
- VSA Analysis Pipeline: Complete Volume Spread Analysis with data export, cleaning, and visualization
- Volume Anomaly Detection: Statistical analysis to identify unusual volume patterns
- AI-Powered Analysis: Generate comprehensive analysis reports using OpenAI's GPT models
- Stock Screening: Filter stocks by institutional ownership, volatility, and volume criteria
- Batch Processing: Process multiple tickers through any workflow
- Daily Market Roundup: Real-time price/volume movement tracking with Kabu
- Volume Spread Analysis (VSA): Detect high-probability trading signals based on volume-price relationships
- Statistical Anomaly Detection: Z-score based volume anomaly identification
- Technical Data Export: Multi-timeframe OHLCV data extraction from Yahoo Finance
- Data Cleaning & Preprocessing: Automated CSV cleaning and formatting
- Interactive Visualizations: Plot generation for signals and anomalies
yen/
├── yen.py # Main workflow manager
├── core/ # Core analysis scripts
│ ├── data_exporter.py # OHLCV data fetching from Yahoo Finance
│ ├── clean_csv_data.py # CSV data cleaning and preprocessing
│ ├── vsa.py # Volume Spread Analysis engine
│ ├── detect_volume_anomalies.py # Statistical volume anomaly detection
│ ├── report_generator.py # AI-powered analysis report generation
│ ├── stock_scanner.py # Stock screening by fundamental criteria
│ ├── prompt_generator.py # VPA analysis prompt generation
│ ├── prompt_generator_v2.py # Multi-ticker prompt generation
│ ├── txt_to_csv.py # Data format conversion utility
│ ├── kabu.py # Daily price/volume movement tracker
│ ├── kabu_visualizer.py # PNG visualization generator
│ └── kabu_visualizer_html.py # HTML report generator
├── data_exports/ # Exported CSV data storage
├── vsa_outputs/ # VSA analysis results
└── requirements.txt # Python dependencies
-
Clone the Repository
git clone https://www.github.com/YedTheEmo/yen.git cd yen -
Create Virtual Environment
python -m venv venv source venv/bin/activate # Linux/Mac # or venv\Scripts\activate # Windows
-
Install Dependencies
pip install -r requirements.txt
-
Configure OpenAI API (Optional) For AI-powered analysis, create
config.json:{ "openai_api_key": "your-openai-api-key-here" }
Complete Volume Spread Analysis with visualization:
python yen.py vsa-analysis AAPL 2024-01-01 2024-12-31 --plot --threshold 1.0Detect unusual volume patterns:
python yen.py volume-anomalies TSLA 2024-01-01 2024-12-31 --threshold 2.0Generate comprehensive AI analysis:
python yen.py ai-analysis NVDA 2024-01-01 2024-12-31 --intervals 1wk 1d 1hRun all analyses in sequence:
python yen.py full-analysis MSFT 2024-01-01 2024-12-31Filter stocks by criteria:
python yen.py stock-screening 10.0 0.3 1000000 --output-file filtered_stocks.txtProcess multiple tickers from file:
python yen.py batch-analysis tickers.txt 2024-01-01 2024-12-31 vsa --plotGenerate daily price/volume summary:
python kabu/kabu.py --tickers tickers.txt
python kabu/kabu_visualizer_html.py --report daily_report.json --output daily_report.htmlpython yen/data_exporter.py AAPL 2024-01-01 2024-12-31 --intervals 1d 1hpython yen/vsa.py -f data.csv -t 1.0 0.5 -p -d 5python yen/detect_volume_anomalies.py input.csv output.csv --threshold 2.0python yen/stock_scanner.py 10.0 0.3 1000000 --ticker-file sp500.txt --resume- Data Export: Fetch OHLCV data from Yahoo Finance
- Data Cleaning: Remove headers and handle missing data
- VSA Analysis: Apply Volume Spread Analysis algorithms
- Visualization: Generate signal plots and charts
- Data Export & Cleaning: Prepare clean OHLCV dataset
- Statistical Analysis: Calculate volume z-scores
- Anomaly Identification: Flag volumes exceeding threshold
- Report Generation: Export anomaly summary to CSV
- Data Collection: Multi-timeframe data aggregation
- Prompt Generation: Create structured analysis prompts
- AI Processing: Send to OpenAI API for analysis
- Report Formatting: Generate HTML/Markdown reports
- Python 3.7+
- pandas
- numpy
- yfinance
- matplotlib
- requests
- openai (for AI analysis)
- Day Trading: VSA signal detection for intraday opportunities
- Swing Trading: Multi-timeframe analysis for position entries
- Risk Management: Volume anomaly alerts for unusual market activity
- Portfolio Screening: Filter stocks by fundamental and technical criteria
- Market Research: AI-powered analysis of market trends and patterns
- Daily Monitoring: Automated daily market roundup and alerts
- API Limits: OpenAI API usage incurs costs based on token consumption
- Data Sources: Uses Yahoo Finance via yfinance library
- File Management: Temporary files are automatically cleaned up
- Error Handling: Graceful failure recovery with detailed error messages
- Resume Support: Stock screening supports resume functionality for large datasets
Always place optional arguments after positional arguments:
# Correct
python yen.py vsa-analysis AAPL 2024-01-01 2024-12-31 --intervals 1d
# Incorrect
python yen.py vsa-analysis --intervals 1d AAPL 2024-01-01 2024-12-31If report_generator.py fails, ensure config.json exists with your OpenAI API key.
Check internet connectivity and verify ticker symbols are valid.
YEN - Your comprehensive toolkit for professional stock market analysis and trading signal generation.