Generate and run self-contained Python workflows using natural language descriptions.
- Generate complete Python scripts from natural language descriptions using LLMs
- Run workflows in ephemeral containers for isolation and reproducibility
- Simple CLI interface for workflow generation and execution
- Support for artifact mapping between host and container
# Clone the repository
git clone https://github.com/yourusername/fnkt.git
cd fnkt
# Create and activate virtual environment
python -m venv venv
source venv/bin/activate # or `venv\Scripts\activate` on Windows
# Install the package
pip install -e .Use the gen command to create a new workflow from a natural language description:
fnkt gen "download all images from a webpage and resize them to 800x600"Options:
--output-dir,-o: Specify output directory (default: ./workflows)--name: Custom name for the workflow file
Use the run command to execute a workflow in a container:
fnkt run path/to/workflow.pyfnkt run workflows/download_images.py \
-- --url https://adamloving.com \
--artifacts "~/Downloads/test:/downloaded_images" \
--output-dir /downloaded_imagesOptions:
--container: Container runtime to use (default: e2b)--artifacts: Map files/directories between host and container (format: local_path:container_path)
Example with artifacts:
fnkt run workflow.py --artifacts "data:/data" --artifacts "output:/output"OPENAI_API_KEY: Your OpenAI API key for LLM integrationFNKT_CONTAINER_RUNTIME: Default container runtime (optional)
- Clone the repository
- Create a virtual environment and activate it
- Install development dependencies:
pip install -e ".[dev]" - Run tests:
pytest
Contributions are welcome! Please feel free to submit a Pull Request.
MIT License - see LICENSE file for details.