-
Notifications
You must be signed in to change notification settings - Fork 16.4k
Create CustomJob and Datasets operators for Vertex AI service #20077
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
20 commits
Select commit
Hold shift + click to select a range
f1fe956
Create PipelineService client hooks for Vertex AI
MaksYermak 6ae69c3
Implement CreateCustomContainerTrainingJob operator
MaksYermak 4371b14
Create CustomJob hooks for VertexAI
MaksYermak c7310c8
Create CustomJob operators for VertexAI
MaksYermak 2278743
Create Dataset hooks for Vertex AI service
MaksYermak 48dbcdc
Create Datasets operators fot Vertex AI
MaksYermak 5c21363
Create system tests fot Vertex AI
MaksYermak 420955a
Add links for Vertex AI operators
MaksYermak 0e0ab9d
Add how-to documentation for Vertex AI operators
MaksYermak 790babf
Change example_dags
MaksYermak e592fcb
Change pre-commit static check script
MaksYermak 3ec11b2
Fix documentation build
MaksYermak a718d1f
Add delegate_to parameter
MaksYermak fc2c912
Change __init__ method for CustomJobBase class
MaksYermak 6c28ec5
Change _CustomTrainingJobBaseOperator to CustomTrainingJobBaseOperator
MaksYermak 8a39d14
Fix unit tests
MaksYermak 87e3e60
Update CustomJobs docstring
MaksYermak 4f325dc
Add TYPE_CHECKING for Context
MaksYermak c7e6812
Change docstring for sync parameter
MaksYermak 50a18bc
Delete :type from docstring
MaksYermak File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
313 changes: 313 additions & 0 deletions
313
airflow/providers/google/cloud/example_dags/example_vertex_ai.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,313 @@ | ||
| # | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file | ||
| # to you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. | ||
|
|
||
| """ | ||
| Example Airflow DAG that demonstrates operators for the Google Vertex AI service in the Google | ||
| Cloud Platform. | ||
|
|
||
| This DAG relies on the following OS environment variables: | ||
|
|
||
| * GCP_VERTEX_AI_BUCKET - Google Cloud Storage bucket where the model will be saved | ||
| after training process was finished. | ||
| * CUSTOM_CONTAINER_URI - path to container with model. | ||
| * PYTHON_PACKAGE_GSC_URI - path to test model in archive. | ||
| * LOCAL_TRAINING_SCRIPT_PATH - path to local training script. | ||
| * DATASET_ID - ID of dataset which will be used in training process. | ||
| """ | ||
| import os | ||
| from datetime import datetime | ||
| from uuid import uuid4 | ||
|
|
||
| from airflow import models | ||
| from airflow.providers.google.cloud.operators.vertex_ai.custom_job import ( | ||
| CreateCustomContainerTrainingJobOperator, | ||
| CreateCustomPythonPackageTrainingJobOperator, | ||
| CreateCustomTrainingJobOperator, | ||
| DeleteCustomTrainingJobOperator, | ||
| ListCustomTrainingJobOperator, | ||
| ) | ||
| from airflow.providers.google.cloud.operators.vertex_ai.dataset import ( | ||
| CreateDatasetOperator, | ||
| DeleteDatasetOperator, | ||
| ExportDataOperator, | ||
| GetDatasetOperator, | ||
| ImportDataOperator, | ||
| ListDatasetsOperator, | ||
| UpdateDatasetOperator, | ||
| ) | ||
|
|
||
| PROJECT_ID = os.environ.get("GCP_PROJECT_ID", "an-id") | ||
| REGION = os.environ.get("GCP_LOCATION", "us-central1") | ||
| BUCKET = os.environ.get("GCP_VERTEX_AI_BUCKET", "vertex-ai-system-tests") | ||
|
|
||
| STAGING_BUCKET = f"gs://{BUCKET}" | ||
| DISPLAY_NAME = str(uuid4()) # Create random display name | ||
| CONTAINER_URI = "gcr.io/cloud-aiplatform/training/tf-cpu.2-2:latest" | ||
| CUSTOM_CONTAINER_URI = os.environ.get("CUSTOM_CONTAINER_URI", "path_to_container_with_model") | ||
| MODEL_SERVING_CONTAINER_URI = "gcr.io/cloud-aiplatform/prediction/tf2-cpu.2-2:latest" | ||
| REPLICA_COUNT = 1 | ||
| MACHINE_TYPE = "n1-standard-4" | ||
| ACCELERATOR_TYPE = "ACCELERATOR_TYPE_UNSPECIFIED" | ||
| ACCELERATOR_COUNT = 0 | ||
| TRAINING_FRACTION_SPLIT = 0.7 | ||
| TEST_FRACTION_SPLIT = 0.15 | ||
| VALIDATION_FRACTION_SPLIT = 0.15 | ||
|
|
||
| PYTHON_PACKAGE_GCS_URI = os.environ.get("PYTHON_PACKAGE_GSC_URI", "path_to_test_model_in_arch") | ||
| PYTHON_MODULE_NAME = "aiplatform_custom_trainer_script.task" | ||
|
|
||
| LOCAL_TRAINING_SCRIPT_PATH = os.environ.get("LOCAL_TRAINING_SCRIPT_PATH", "path_to_training_script") | ||
|
|
||
| TRAINING_PIPELINE_ID = "test-training-pipeline-id" | ||
| CUSTOM_JOB_ID = "test-custom-job-id" | ||
|
|
||
| IMAGE_DATASET = { | ||
| "display_name": str(uuid4()), | ||
| "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/image_1.0.0.yaml", | ||
| "metadata": "test-image-dataset", | ||
| } | ||
| TABULAR_DATASET = { | ||
| "display_name": str(uuid4()), | ||
| "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/tabular_1.0.0.yaml", | ||
| "metadata": "test-tabular-dataset", | ||
| } | ||
| TEXT_DATASET = { | ||
| "display_name": str(uuid4()), | ||
| "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/text_1.0.0.yaml", | ||
| "metadata": "test-text-dataset", | ||
| } | ||
| VIDEO_DATASET = { | ||
| "display_name": str(uuid4()), | ||
| "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/video_1.0.0.yaml", | ||
| "metadata": "test-video-dataset", | ||
| } | ||
| TIME_SERIES_DATASET = { | ||
| "display_name": str(uuid4()), | ||
| "metadata_schema_uri": "gs://google-cloud-aiplatform/schema/dataset/metadata/time_series_1.0.0.yaml", | ||
| "metadata": "test-video-dataset", | ||
| } | ||
| DATASET_ID = os.environ.get("DATASET_ID", "test-dataset-id") | ||
| TEST_EXPORT_CONFIG = {"gcs_destination": {"output_uri_prefix": "gs://test-vertex-ai-bucket/exports"}} | ||
| TEST_IMPORT_CONFIG = [ | ||
| { | ||
| "data_item_labels": { | ||
| "test-labels-name": "test-labels-value", | ||
| }, | ||
| "import_schema_uri": ( | ||
| "gs://google-cloud-aiplatform/schema/dataset/ioformat/image_bounding_box_io_format_1.0.0.yaml" | ||
| ), | ||
| "gcs_source": { | ||
| "uris": ["gs://ucaip-test-us-central1/dataset/salads_oid_ml_use_public_unassigned.jsonl"] | ||
| }, | ||
| }, | ||
| ] | ||
| DATASET_TO_UPDATE = {"display_name": "test-name"} | ||
| TEST_UPDATE_MASK = {"paths": ["displayName"]} | ||
|
|
||
| with models.DAG( | ||
| "example_gcp_vertex_ai_custom_jobs", | ||
| schedule_interval="@once", | ||
| start_date=datetime(2021, 1, 1), | ||
| catchup=False, | ||
| ) as custom_jobs_dag: | ||
| # [START how_to_cloud_vertex_ai_create_custom_container_training_job_operator] | ||
| create_custom_container_training_job = CreateCustomContainerTrainingJobOperator( | ||
| task_id="custom_container_task", | ||
| staging_bucket=STAGING_BUCKET, | ||
| display_name=f"train-housing-container-{DISPLAY_NAME}", | ||
| container_uri=CUSTOM_CONTAINER_URI, | ||
| model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI, | ||
| # run params | ||
| dataset_id=DATASET_ID, | ||
| command=["python3", "task.py"], | ||
| model_display_name=f"container-housing-model-{DISPLAY_NAME}", | ||
| replica_count=REPLICA_COUNT, | ||
| machine_type=MACHINE_TYPE, | ||
| accelerator_type=ACCELERATOR_TYPE, | ||
| accelerator_count=ACCELERATOR_COUNT, | ||
| training_fraction_split=TRAINING_FRACTION_SPLIT, | ||
| validation_fraction_split=VALIDATION_FRACTION_SPLIT, | ||
| test_fraction_split=TEST_FRACTION_SPLIT, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_create_custom_container_training_job_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_create_custom_python_package_training_job_operator] | ||
| create_custom_python_package_training_job = CreateCustomPythonPackageTrainingJobOperator( | ||
| task_id="python_package_task", | ||
| staging_bucket=STAGING_BUCKET, | ||
| display_name=f"train-housing-py-package-{DISPLAY_NAME}", | ||
| python_package_gcs_uri=PYTHON_PACKAGE_GCS_URI, | ||
| python_module_name=PYTHON_MODULE_NAME, | ||
| container_uri=CONTAINER_URI, | ||
| model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI, | ||
| # run params | ||
| dataset_id=DATASET_ID, | ||
| model_display_name=f"py-package-housing-model-{DISPLAY_NAME}", | ||
| replica_count=REPLICA_COUNT, | ||
| machine_type=MACHINE_TYPE, | ||
| accelerator_type=ACCELERATOR_TYPE, | ||
| accelerator_count=ACCELERATOR_COUNT, | ||
| training_fraction_split=TRAINING_FRACTION_SPLIT, | ||
| validation_fraction_split=VALIDATION_FRACTION_SPLIT, | ||
| test_fraction_split=TEST_FRACTION_SPLIT, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_create_custom_python_package_training_job_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_create_custom_training_job_operator] | ||
| create_custom_training_job = CreateCustomTrainingJobOperator( | ||
| task_id="custom_task", | ||
| staging_bucket=STAGING_BUCKET, | ||
| display_name=f"train-housing-custom-{DISPLAY_NAME}", | ||
| script_path=LOCAL_TRAINING_SCRIPT_PATH, | ||
| container_uri=CONTAINER_URI, | ||
| requirements=["gcsfs==0.7.1"], | ||
| model_serving_container_image_uri=MODEL_SERVING_CONTAINER_URI, | ||
| # run params | ||
| dataset_id=DATASET_ID, | ||
| replica_count=1, | ||
| model_display_name=f"custom-housing-model-{DISPLAY_NAME}", | ||
| sync=False, | ||
potiuk marked this conversation as resolved.
Outdated
Show resolved
Hide resolved
|
||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_create_custom_training_job_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_delete_custom_training_job_operator] | ||
| delete_custom_training_job = DeleteCustomTrainingJobOperator( | ||
| task_id="delete_custom_training_job", | ||
| training_pipeline_id=TRAINING_PIPELINE_ID, | ||
| custom_job_id=CUSTOM_JOB_ID, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_delete_custom_training_job_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_list_custom_training_job_operator] | ||
| list_custom_training_job = ListCustomTrainingJobOperator( | ||
| task_id="list_custom_training_job", | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_list_custom_training_job_operator] | ||
|
|
||
| with models.DAG( | ||
| "example_gcp_vertex_ai_dataset", | ||
| schedule_interval="@once", | ||
| start_date=datetime(2021, 1, 1), | ||
| catchup=False, | ||
| ) as dataset_dag: | ||
| # [START how_to_cloud_vertex_ai_create_dataset_operator] | ||
| create_image_dataset_job = CreateDatasetOperator( | ||
| task_id="image_dataset", | ||
| dataset=IMAGE_DATASET, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| create_tabular_dataset_job = CreateDatasetOperator( | ||
| task_id="tabular_dataset", | ||
| dataset=TABULAR_DATASET, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| create_text_dataset_job = CreateDatasetOperator( | ||
| task_id="text_dataset", | ||
| dataset=TEXT_DATASET, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| create_video_dataset_job = CreateDatasetOperator( | ||
| task_id="video_dataset", | ||
| dataset=VIDEO_DATASET, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| create_time_series_dataset_job = CreateDatasetOperator( | ||
| task_id="time_series_dataset", | ||
| dataset=TIME_SERIES_DATASET, | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_create_dataset_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_delete_dataset_operator] | ||
| delete_dataset_job = DeleteDatasetOperator( | ||
| task_id="delete_dataset", | ||
| dataset_id=create_text_dataset_job.output['dataset_id'], | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_delete_dataset_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_get_dataset_operator] | ||
| get_dataset = GetDatasetOperator( | ||
| task_id="get_dataset", | ||
| project_id=PROJECT_ID, | ||
| region=REGION, | ||
| dataset_id=create_tabular_dataset_job.output['dataset_id'], | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_get_dataset_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_export_data_operator] | ||
| export_data_job = ExportDataOperator( | ||
| task_id="export_data", | ||
| dataset_id=create_image_dataset_job.output['dataset_id'], | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| export_config=TEST_EXPORT_CONFIG, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_export_data_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_import_data_operator] | ||
| import_data_job = ImportDataOperator( | ||
| task_id="import_data", | ||
| dataset_id=create_image_dataset_job.output['dataset_id'], | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| import_configs=TEST_IMPORT_CONFIG, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_import_data_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_list_dataset_operator] | ||
| list_dataset_job = ListDatasetsOperator( | ||
| task_id="list_dataset", | ||
| region=REGION, | ||
| project_id=PROJECT_ID, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_list_dataset_operator] | ||
|
|
||
| # [START how_to_cloud_vertex_ai_update_dataset_operator] | ||
| update_dataset_job = UpdateDatasetOperator( | ||
| task_id="update_dataset", | ||
| project_id=PROJECT_ID, | ||
| region=REGION, | ||
| dataset_id=create_video_dataset_job.output['dataset_id'], | ||
| dataset=DATASET_TO_UPDATE, | ||
| update_mask=TEST_UPDATE_MASK, | ||
| ) | ||
| # [END how_to_cloud_vertex_ai_update_dataset_operator] | ||
|
|
||
| create_time_series_dataset_job | ||
| create_text_dataset_job >> delete_dataset_job | ||
| create_tabular_dataset_job >> get_dataset | ||
| create_image_dataset_job >> import_data_job >> export_data_job | ||
| create_video_dataset_job >> update_dataset_job | ||
| list_dataset_job | ||
16 changes: 16 additions & 0 deletions
16
airflow/providers/google/cloud/hooks/vertex_ai/__init__.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,16 @@ | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file | ||
| # to you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.