-
Notifications
You must be signed in to change notification settings - Fork 16.4k
Add Alibaba Cloud AnalyticDB Spark Support #31787
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Merged
Merged
Changes from all commits
Commits
Show all changes
9 commits
Select commit
Hold shift + click to select a range
63d772a
Add Alibaba Cloud AnalyticDB Spark Support
dcoliversun 3b6e2d2
revert db.py change
dcoliversun fffd819
address comments
dcoliversun 2896c00
address comments
dcoliversun ee34528
Merge branch 'main' into AIRFLOW-31738
dcoliversun c9cd7b9
fix ut error
dcoliversun 951b125
fix static check
dcoliversun 91feaf2
fix static check
dcoliversun a9ebc53
fix index.rst
dcoliversun File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
366 changes: 366 additions & 0 deletions
366
airflow/providers/alibaba/cloud/hooks/analyticdb_spark.py
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,366 @@ | ||
| # | ||
| # Licensed to the Apache Software Foundation (ASF) under one | ||
| # or more contributor license agreements. See the NOTICE file | ||
| # distributed with this work for additional information | ||
| # regarding copyright ownership. The ASF licenses this file | ||
| # to you under the Apache License, Version 2.0 (the | ||
| # "License"); you may not use this file except in compliance | ||
| # with the License. You may obtain a copy of the License at | ||
| # | ||
| # http://www.apache.org/licenses/LICENSE-2.0 | ||
| # | ||
| # Unless required by applicable law or agreed to in writing, | ||
| # software distributed under the License is distributed on an | ||
| # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
| # KIND, either express or implied. See the License for the | ||
| # specific language governing permissions and limitations | ||
| # under the License. | ||
| from __future__ import annotations | ||
|
|
||
| import json | ||
| from enum import Enum | ||
| from typing import Any, Sequence | ||
|
|
||
| from alibabacloud_adb20211201.client import Client | ||
| from alibabacloud_adb20211201.models import ( | ||
| GetSparkAppLogRequest, | ||
| GetSparkAppStateRequest, | ||
| GetSparkAppWebUiAddressRequest, | ||
| KillSparkAppRequest, | ||
| SubmitSparkAppRequest, | ||
| SubmitSparkAppResponse, | ||
| ) | ||
| from alibabacloud_tea_openapi.models import Config | ||
|
|
||
| from airflow.exceptions import AirflowException | ||
| from airflow.hooks.base import BaseHook | ||
| from airflow.utils.log.logging_mixin import LoggingMixin | ||
|
|
||
|
|
||
| class AppState(Enum): | ||
| """ | ||
| AnalyticDB Spark application states doc: | ||
| https://www.alibabacloud.com/help/en/analyticdb-for-mysql/latest/api-doc-adb-2021-12-01-api-struct | ||
| -sparkappinfo. | ||
|
|
||
| """ | ||
|
|
||
| SUBMITTED = "SUBMITTED" | ||
| STARTING = "STARTING" | ||
| RUNNING = "RUNNING" | ||
| FAILING = "FAILING" | ||
| FAILED = "FAILED" | ||
| KILLING = "KILLING" | ||
| KILLED = "KILLED" | ||
| SUCCEEDING = "SUCCEEDING" | ||
| COMPLETED = "COMPLETED" | ||
| FATAL = "FATAL" | ||
| UNKNOWN = "UNKNOWN" | ||
|
|
||
|
|
||
| class AnalyticDBSparkHook(BaseHook, LoggingMixin): | ||
| """ | ||
| Hook for AnalyticDB MySQL Spark through the REST API. | ||
|
|
||
| :param adb_spark_conn_id: The Airflow connection used for AnalyticDB MySQL Spark credentials. | ||
| :param region: AnalyticDB MySQL region you want to submit spark application. | ||
| """ | ||
|
|
||
| TERMINAL_STATES = {AppState.COMPLETED, AppState.FAILED, AppState.FATAL, AppState.KILLED} | ||
|
|
||
| conn_name_attr = "alibabacloud_conn_id" | ||
| default_conn_name = "adb_spark_default" | ||
| conn_type = "adb_spark" | ||
| hook_name = "AnalyticDB Spark" | ||
|
|
||
| def __init__( | ||
| self, adb_spark_conn_id: str = "adb_spark_default", region: str | None = None, *args, **kwargs | ||
| ) -> None: | ||
| self.adb_spark_conn_id = adb_spark_conn_id | ||
| self.adb_spark_conn = self.get_connection(adb_spark_conn_id) | ||
| self.region = self.get_default_region() if region is None else region | ||
| super().__init__(*args, **kwargs) | ||
|
|
||
| def submit_spark_app( | ||
| self, cluster_id: str, rg_name: str, *args: Any, **kwargs: Any | ||
| ) -> SubmitSparkAppResponse: | ||
| """ | ||
| Perform request to submit spark application. | ||
|
|
||
| :param cluster_id: The cluster ID of AnalyticDB MySQL 3.0 Data Lakehouse. | ||
| :param rg_name: The name of resource group in AnalyticDB MySQL 3.0 Data Lakehouse cluster. | ||
| """ | ||
| self.log.info("Submitting application") | ||
| request = SubmitSparkAppRequest( | ||
| dbcluster_id=cluster_id, | ||
| resource_group_name=rg_name, | ||
| data=json.dumps(self.build_submit_app_data(*args, **kwargs)), | ||
| app_type="BATCH", | ||
| ) | ||
| try: | ||
| return self.get_adb_spark_client().submit_spark_app(request) | ||
| except Exception as e: | ||
| self.log.error(e) | ||
| raise AirflowException("Errors when submit spark application") from e | ||
|
|
||
| def submit_spark_sql( | ||
| self, cluster_id: str, rg_name: str, *args: Any, **kwargs: Any | ||
| ) -> SubmitSparkAppResponse: | ||
| """ | ||
| Perform request to submit spark sql. | ||
|
|
||
| :param cluster_id: The cluster ID of AnalyticDB MySQL 3.0 Data Lakehouse. | ||
| :param rg_name: The name of resource group in AnalyticDB MySQL 3.0 Data Lakehouse cluster. | ||
| """ | ||
| self.log.info("Submitting Spark SQL") | ||
| request = SubmitSparkAppRequest( | ||
| dbcluster_id=cluster_id, | ||
| resource_group_name=rg_name, | ||
| data=self.build_submit_sql_data(*args, **kwargs), | ||
| app_type="SQL", | ||
| ) | ||
| try: | ||
| return self.get_adb_spark_client().submit_spark_app(request) | ||
| except Exception as e: | ||
| self.log.error(e) | ||
| raise AirflowException("Errors when submit spark sql") from e | ||
|
|
||
| def get_spark_state(self, app_id: str) -> str: | ||
| """ | ||
| Fetch the state of the specified spark application. | ||
|
|
||
| :param app_id: identifier of the spark application | ||
| """ | ||
| self.log.debug("Fetching state for spark application %s", app_id) | ||
| try: | ||
| return ( | ||
| self.get_adb_spark_client() | ||
| .get_spark_app_state(GetSparkAppStateRequest(app_id=app_id)) | ||
| .body.data.state | ||
| ) | ||
| except Exception as e: | ||
| self.log.error(e) | ||
| raise AirflowException(f"Errors when fetching state for spark application: {app_id}") from e | ||
|
|
||
| def get_spark_web_ui_address(self, app_id: str) -> str: | ||
| """ | ||
| Fetch the web ui address of the specified spark application. | ||
|
|
||
| :param app_id: identifier of the spark application | ||
| """ | ||
| self.log.debug("Fetching web ui address for spark application %s", app_id) | ||
| try: | ||
| return ( | ||
| self.get_adb_spark_client() | ||
| .get_spark_app_web_ui_address(GetSparkAppWebUiAddressRequest(app_id=app_id)) | ||
| .body.data.web_ui_address | ||
| ) | ||
| except Exception as e: | ||
| self.log.error(e) | ||
| raise AirflowException( | ||
| f"Errors when fetching web ui address for spark application: {app_id}" | ||
| ) from e | ||
|
|
||
| def get_spark_log(self, app_id: str) -> str: | ||
| """ | ||
| Get the logs for a specified spark application. | ||
|
|
||
| :param app_id: identifier of the spark application | ||
| """ | ||
| self.log.debug("Fetching log for spark application %s", app_id) | ||
| try: | ||
| return ( | ||
| self.get_adb_spark_client() | ||
| .get_spark_app_log(GetSparkAppLogRequest(app_id=app_id)) | ||
| .body.data.log_content | ||
| ) | ||
| except Exception as e: | ||
| self.log.error(e) | ||
| raise AirflowException(f"Errors when fetching log for spark application: {app_id}") from e | ||
|
|
||
| def kill_spark_app(self, app_id: str) -> None: | ||
| """ | ||
| Kill the specified spark application. | ||
|
|
||
| :param app_id: identifier of the spark application | ||
| """ | ||
| self.log.info("Killing spark application %s", app_id) | ||
| try: | ||
| self.get_adb_spark_client().kill_spark_app(KillSparkAppRequest(app_id=app_id)) | ||
| except Exception as e: | ||
| self.log.error(e) | ||
| raise AirflowException(f"Errors when killing spark application: {app_id}") from e | ||
|
|
||
| @staticmethod | ||
| def build_submit_app_data( | ||
| file: str | None = None, | ||
| class_name: str | None = None, | ||
| args: Sequence[str | int | float] | None = None, | ||
| conf: dict[Any, Any] | None = None, | ||
| jars: Sequence[str] | None = None, | ||
| py_files: Sequence[str] | None = None, | ||
| files: Sequence[str] | None = None, | ||
| driver_resource_spec: str | None = None, | ||
| executor_resource_spec: str | None = None, | ||
| num_executors: int | str | None = None, | ||
| archives: Sequence[str] | None = None, | ||
| name: str | None = None, | ||
| ) -> dict: | ||
| """ | ||
| Build the submit application request data. | ||
|
|
||
| :param file: path of the file containing the application to execute. | ||
| :param class_name: name of the application Java/Spark main class. | ||
| :param args: application command line arguments. | ||
| :param conf: Spark configuration properties. | ||
| :param jars: jars to be used in this application. | ||
| :param py_files: python files to be used in this application. | ||
| :param files: files to be used in this application. | ||
| :param driver_resource_spec: The resource specifications of the Spark driver. | ||
| :param executor_resource_spec: The resource specifications of each Spark executor. | ||
| :param num_executors: number of executors to launch for this application. | ||
| :param archives: archives to be used in this application. | ||
| :param name: name of this application. | ||
| """ | ||
| if file is None: | ||
| raise ValueError("Parameter file is need when submit spark application.") | ||
|
|
||
| data: dict[str, Any] = {"file": file} | ||
| extra_conf: dict[str, str] = {} | ||
|
|
||
| if class_name: | ||
| data["className"] = class_name | ||
| if args and AnalyticDBSparkHook._validate_list_of_stringables(args): | ||
| data["args"] = [str(val) for val in args] | ||
| if driver_resource_spec: | ||
| extra_conf["spark.driver.resourceSpec"] = driver_resource_spec | ||
| if executor_resource_spec: | ||
| extra_conf["spark.executor.resourceSpec"] = executor_resource_spec | ||
| if num_executors: | ||
| extra_conf["spark.executor.instances"] = str(num_executors) | ||
| data["conf"] = extra_conf.copy() | ||
| if conf and AnalyticDBSparkHook._validate_extra_conf(conf): | ||
| data["conf"].update(conf) | ||
| if jars and AnalyticDBSparkHook._validate_list_of_stringables(jars): | ||
| data["jars"] = jars | ||
| if py_files and AnalyticDBSparkHook._validate_list_of_stringables(py_files): | ||
| data["pyFiles"] = py_files | ||
| if files and AnalyticDBSparkHook._validate_list_of_stringables(files): | ||
| data["files"] = files | ||
| if archives and AnalyticDBSparkHook._validate_list_of_stringables(archives): | ||
| data["archives"] = archives | ||
| if name: | ||
| data["name"] = name | ||
|
|
||
| return data | ||
|
|
||
| @staticmethod | ||
| def build_submit_sql_data( | ||
| sql: str | None = None, | ||
| conf: dict[Any, Any] | None = None, | ||
| driver_resource_spec: str | None = None, | ||
| executor_resource_spec: str | None = None, | ||
| num_executors: int | str | None = None, | ||
| name: str | None = None, | ||
| ) -> str: | ||
| """ | ||
| Build the submit spark sql request data. | ||
|
|
||
| :param sql: The SQL query to execute. (templated) | ||
| :param conf: Spark configuration properties. | ||
| :param driver_resource_spec: The resource specifications of the Spark driver. | ||
| :param executor_resource_spec: The resource specifications of each Spark executor. | ||
| :param num_executors: number of executors to launch for this application. | ||
| :param name: name of this application. | ||
| """ | ||
| if sql is None: | ||
| raise ValueError("Parameter sql is need when submit spark sql.") | ||
|
|
||
| extra_conf: dict[str, str] = {} | ||
| formatted_conf = "" | ||
|
|
||
| if driver_resource_spec: | ||
| extra_conf["spark.driver.resourceSpec"] = driver_resource_spec | ||
| if executor_resource_spec: | ||
| extra_conf["spark.executor.resourceSpec"] = executor_resource_spec | ||
| if num_executors: | ||
| extra_conf["spark.executor.instances"] = str(num_executors) | ||
| if name: | ||
| extra_conf["spark.app.name"] = name | ||
| if conf and AnalyticDBSparkHook._validate_extra_conf(conf): | ||
| extra_conf.update(conf) | ||
| for key, value in extra_conf.items(): | ||
| formatted_conf += f"set {key} = {value};" | ||
|
|
||
| return (formatted_conf + sql).strip() | ||
|
|
||
| @staticmethod | ||
| def _validate_list_of_stringables(vals: Sequence[str | int | float]) -> bool: | ||
| """ | ||
| Check the values in the provided list can be converted to strings. | ||
|
|
||
| :param vals: list to validate | ||
| """ | ||
| if ( | ||
| vals is None | ||
| or not isinstance(vals, (tuple, list)) | ||
| or any(1 for val in vals if not isinstance(val, (str, int, float))) | ||
| ): | ||
| raise ValueError("List of strings expected") | ||
| return True | ||
|
|
||
| @staticmethod | ||
| def _validate_extra_conf(conf: dict[Any, Any]) -> bool: | ||
| """ | ||
| Check configuration values are either strings or ints. | ||
|
|
||
| :param conf: configuration variable | ||
| """ | ||
| if conf: | ||
| if not isinstance(conf, dict): | ||
| raise ValueError("'conf' argument must be a dict") | ||
| if any(True for k, v in conf.items() if not (v and isinstance(v, str) or isinstance(v, int))): | ||
| raise ValueError("'conf' values must be either strings or ints") | ||
| return True | ||
|
|
||
| def get_adb_spark_client(self) -> Client: | ||
| """Get valid AnalyticDB MySQL Spark client.""" | ||
| assert self.region is not None | ||
|
|
||
| extra_config = self.adb_spark_conn.extra_dejson | ||
| auth_type = extra_config.get("auth_type", None) | ||
| if not auth_type: | ||
| raise ValueError("No auth_type specified in extra_config.") | ||
|
|
||
| if auth_type != "AK": | ||
| raise ValueError(f"Unsupported auth_type: {auth_type}") | ||
| adb_spark_access_key_id = extra_config.get("access_key_id", None) | ||
| adb_spark_access_secret = extra_config.get("access_key_secret", None) | ||
| if not adb_spark_access_key_id: | ||
| raise ValueError(f"No access_key_id is specified for connection: {self.adb_spark_conn_id}") | ||
|
|
||
| if not adb_spark_access_secret: | ||
| raise ValueError(f"No access_key_secret is specified for connection: {self.adb_spark_conn_id}") | ||
|
|
||
| return Client( | ||
| Config( | ||
| access_key_id=adb_spark_access_key_id, | ||
| access_key_secret=adb_spark_access_secret, | ||
| endpoint=f"adb.{self.region}.aliyuncs.com", | ||
| ) | ||
| ) | ||
|
|
||
| def get_default_region(self) -> str | None: | ||
| """Get default region from connection.""" | ||
| extra_config = self.adb_spark_conn.extra_dejson | ||
| auth_type = extra_config.get("auth_type", None) | ||
| if not auth_type: | ||
| raise ValueError("No auth_type specified in extra_config. ") | ||
|
|
||
| if auth_type != "AK": | ||
| raise ValueError(f"Unsupported auth_type: {auth_type}") | ||
|
|
||
| default_region = extra_config.get("region", None) | ||
| if not default_region: | ||
| raise ValueError(f"No region is specified for connection: {self.adb_spark_conn}") | ||
| return default_region | ||
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Uh oh!
There was an error while loading. Please reload this page.