-
Notifications
You must be signed in to change notification settings - Fork 4k
Open
Description
import pyarrow as pa
import pyarrow.parquet as pq
import pandas as pd
from datetime import datetime, timedelta
def generate_data(event_type, event_id, offset=0):
"""Generate data."""
now = datetime.utcnow() + timedelta(seconds=offset)
obj = {
'event_type': event_type,
'event_id': event_id,
'event_date': now.date(),
'foo': None,
'bar': u'hello',
}
if event_type == 2:
obj['foo'] = 1
obj['bar'] = u'world'
if event_type == 3:
obj['different'] = u'data'
obj['bar'] = u'event type 3'
else:
obj['different'] = None
return obj
data = [
generate_data(1, 1, 1),
generate_data(1, 1, 3600 * 72),
generate_data(2, 1, 1),
generate_data(2, 1, 3600 * 72),
generate_data(3, 1, 1),
generate_data(3, 1, 3600 * 72),
]
df = pd.DataFrame.from_records(data, index='event_id')
table = pa.Table.from_pandas(df)
pq.write_to_dataset(table, root_path='/tmp/events', partition_cols=['event_type', 'event_date'])
dataset = pq.ParquetDataset('/tmp/events')
table = dataset.read()
print(table.num_rows)Expected output:
6Actual:
python example_failure.py
Traceback (most recent call last):
File "example_failure.py", line 43, in <module>
dataset = pq.ParquetDataset('/tmp/events')
File "/Users/sam/.virtualenvs/test-parquet/lib/python2.7/site-packages/pyarrow/parquet.py", line 745, in __init__
self.validate_schemas()
File "/Users/sam/.virtualenvs/test-parquet/lib/python2.7/site-packages/pyarrow/parquet.py", line 775, in validate_schemas
dataset_schema))
ValueError: Schema in partition[event_type=2, event_date=0] /tmp/events/event_type=3/event_date=2018-07-16 00:00:00/be001bf576674d09825539f20e99ebe5.parquet was different.
bar: string
different: string
foo: double
event_id: int64
metadata
--------
{'pandas': '{"pandas_version": "0.23.3", "index_columns": ["event_id"], "columns": [{"metadata": null, "field_name": "bar", "name": "bar", "numpy_type": "object", "pandas_type": "unicode"}, {"metadata": null, "field_name": "different", "name": "different", "numpy_type": "object", "pandas_type": "unicode"}, {"metadata": null, "field_name": "foo", "name": "foo", "numpy_type": "float64", "pandas_type": "float64"}, {"metadata": null, "field_name": "event_id", "name": "event_id", "numpy_type": "int64", "pandas_type": "int64"}], "column_indexes": [{"metadata": null, "field_name": null, "name": null, "numpy_type": "object", "pandas_type": "bytes"}]}'}
vs
bar: string
different: null
foo: double
event_id: int64
metadata
--------
{'pandas': '{"pandas_version": "0.23.3", "index_columns": ["event_id"], "columns": [{"metadata": null, "field_name": "bar", "name": "bar", "numpy_type": "object", "pandas_type": "unicode"}, {"metadata": null, "field_name": "different", "name": "different", "numpy_type": "object", "pandas_type": "empty"}, {"metadata": null, "field_name": "foo", "name": "foo", "numpy_type": "float64", "pandas_type": "float64"}, {"metadata": null, "field_name": "event_id", "name": "event_id", "numpy_type": "int64", "pandas_type": "int64"}], "column_indexes": [{"metadata": null, "field_name": null, "name": null, "numpy_type": "object", "pandas_type": "bytes"}]}'}Apparently what is happening is that pyarrow is interpreting the schema from each of the partitions individually and the partitions for event_type=3 / event_date=\* both have values for the column different whereas the other columns do not. The discrepancy causes the None values of the other partitions to be labeled as pandas_type empty instead of unicode.
Reporter: Sam Oluwalana
Related issues:
- [Python] More graceful reading of empty String columns in ParquetDataset (relates to)
- [Python][Dataset] Support using dataset API in pyarrow.parquet with a minimal ParquetDataset shim (depends upon)
- [C++][Dataset] Support null -> other type promotion in Dataset scanning (depends upon)
Note: This issue was originally created as ARROW-2860. Please see the migration documentation for further details.