-
Notifications
You must be signed in to change notification settings - Fork 4k
Open
Description
Datatypes are not preserved when a pandas data frame is partitioned and saved as parquet file using pyarrow but that's not the case when the data frame is not partitioned.
Case 1: Saving a partitioned dataset - Data Types are NOT preserved
# Saving a Pandas Dataframe to Local as a partioned parquet file using pyarrow
import pandas as pd
df = pd.DataFrame( {'age': [77,32,234],'name':['agan','bbobby','test'] }
)
path = 'test'
partition_cols=['age']
print('Datatypes before saving the dataset')
print(df.dtypes)
table = pa.Table.from_pandas(df)
pq.write_to_dataset(table, path, partition_cols=partition_cols, preserve_index=False)
# Loading a dataset partioned parquet dataset from local
df = pq.ParquetDataset(path, filesystem=None).read_pandas().to_pandas()
print('\nDatatypes after loading the dataset')
print(df.dtypes)Output:
Datatypes before saving the dataset
age int64
name object
dtype: object
Datatypes after loading the dataset
name object
age category
dtype: objectFrom the above output, we could see that the data type for age is int64 in the original pandas data frame but it got changed to category when we saved to local and loaded back.
Case 2: Non-partitioned dataset - Data types are preserved
import pandas as pd
print('Saving a Pandas Dataframe to Local as a parquet file without partitioning using pyarrow')
df = pd.DataFrame(
{'age': [77,32,234],'name':['agan','bbobby','test'] }
)
path = 'test_without_partition'
print('Datatypes before saving the dataset')
print(df.dtypes)
table = pa.Table.from_pandas(df)
pq.write_to_dataset(table, path, preserve_index=False)
# Loading a non-partioned parquet file from local
df = pq.ParquetDataset(path, filesystem=None).read_pandas().to_pandas()
print('\nDatatypes after loading the dataset')
print(df.dtypes)Output:
Saving a Pandas Dataframe to Local as a parquet file without partitioning using pyarrow
Datatypes before saving the dataset
age int64
name object
dtype: object
Datatypes after loading the dataset
age int64
name object
dtype: objectVersions
- Python 3.7.3
- pyarrow 0.14.1
Environment: Python 3.7.3
pyarrow 0.14.1
Reporter: Naga
Related issues:
- [Python] Underscores in partition (string) values are dropped when reading dataset (is related to)
- [C++][Dataset] Automatically detect boolean partition columns (is related to)
- [Python][Dataset] Support using dataset API in pyarrow.parquet with a minimal ParquetDataset shim (depends upon)
Note: This issue was originally created as ARROW-6114. Please see the migration documentation for further details.