-
Notifications
You must be signed in to change notification settings - Fork 4k
Closed
Closed
Copy link
Labels
Description
In the latest (8.0.0) release the following code snippet seems to write out data in a different order for each of the partitions when use_threads=True vs when {}use_threads=False{}.
Testing the same snippet with pyarrow 7.0.0 gives the same order regardless of whether use_threads is set to True when the data is written.
import itertools
import numpy as np
import pyarrow.dataset as ds
import pyarrow as pa
n_rows, n_cols = 100_000, 20
def create_dataframe(color, year):
arr = np.random.randn(n_rows, n_cols)
df = pd.DataFrame(data=arr, columns=[f"column_{i}" for i in range(n_cols)])
df["color"] = color
df["year"] = year
df["id"] = np.arange(len(df))
return df
partitions = ["red", "green", "blue"]
years = [2011, 2012, 2013]
dataframes = [create_dataframe(p, y) for p, y in itertools.product(partitions, years)]
df = pd.concat(dataframes)
table = pa.Table.from_pandas(df=df)
ds.write_dataset(
table,
"./test",
format="parquet",
max_rows_per_group=1_000_000,
min_rows_per_group=1_000_000,
existing_data_behavior="overwrite_or_ignore",
partitioning=ds.partitioning(pa.schema([
("color", pa.string()),
("year", pa.int64())
]), flavor="hive"),
use_threads=True,
)
df_read = pd.read_parquet("./test/color=blue/year=2012")
df_read.head()[["id"]]
Tested on Ubuntu 20.04 with Python 3.8 and arrow versions 8.0.0 and 7.0.0.
Reporter: Daniel Friar
Related issues:
- [C++][Dataset] Preserve order when writing dataset (duplicates)
Note: This issue was originally created as ARROW-16506. Please see the migration documentation for further details.