Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions cpp/src/arrow/compute/exec/options.h
Original file line number Diff line number Diff line change
Expand Up @@ -109,6 +109,10 @@ class ARROW_EXPORT ProjectNodeOptions : public ExecNodeOptions {
};

/// \brief Make a node which aggregates input batches, optionally grouped by keys.
///
/// If the keys attribute is a non-empty vector, then each aggregate in `aggregates` is
/// expected to be a HashAggregate function. If the keys attribute is an empty vector,
/// then each aggregate is assumed to be a ScalarAggregate function.
Comment on lines +113 to +115
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

✔️ thank you!

class ARROW_EXPORT AggregateNodeOptions : public ExecNodeOptions {
public:
explicit AggregateNodeOptions(std::vector<Aggregate> aggregates,
Expand Down
30 changes: 30 additions & 0 deletions cpp/src/arrow/compute/exec/plan_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -933,6 +933,36 @@ TEST(ExecPlanExecution, SourceGroupedSum) {
}
}

TEST(ExecPlanExecution, SourceMinMaxScalar) {
// Regression test for ARROW-16904
for (bool parallel : {false, true}) {
SCOPED_TRACE(parallel ? "parallel/merged" : "serial");

auto input = MakeGroupableBatches(/*multiplicity=*/parallel ? 100 : 1);
auto minmax_opts = std::make_shared<ScalarAggregateOptions>();
auto expected_result = ExecBatch::Make(
{ScalarFromJSON(struct_({field("min", int32()), field("max", int32())}),
R"({"min": -8, "max": 12})")});

ASSERT_OK_AND_ASSIGN(auto plan, ExecPlan::Make());
AsyncGenerator<util::optional<ExecBatch>> sink_gen;

// NOTE: Test `ScalarAggregateNode` by omitting `keys` attribute
ASSERT_OK(Declaration::Sequence(
{{"source",
SourceNodeOptions{input.schema, input.gen(parallel, /*slow=*/false)}},
{"aggregate", AggregateNodeOptions{
/*aggregates=*/{{"min_max", std::move(minmax_opts),
"i32", "min_max"}},
/*keys=*/{}}},
{"sink", SinkNodeOptions{&sink_gen}}})
.AddToPlan(plan.get()));

ASSERT_THAT(StartAndCollect(plan.get(), sink_gen),
Finishes(ResultWith(UnorderedElementsAreArray({*expected_result}))));
}
}

TEST(ExecPlanExecution, NestedSourceFilter) {
for (bool parallel : {false, true}) {
SCOPED_TRACE(parallel ? "parallel/merged" : "serial");
Expand Down
52 changes: 20 additions & 32 deletions cpp/src/arrow/compute/kernels/aggregate_basic_internal.h
Original file line number Diff line number Diff line change
Expand Up @@ -440,13 +440,11 @@ struct MinMaxImpl : public ScalarAggregator {
local.has_nulls = !scalar.is_valid;
this->count += scalar.is_valid;

if (local.has_nulls && !options.skip_nulls) {
this->state = local;
return Status::OK();
if (!local.has_nulls || options.skip_nulls) {
local.MergeOne(internal::UnboxScalar<ArrowType>::Unbox(scalar));
}

local.MergeOne(internal::UnboxScalar<ArrowType>::Unbox(scalar));
this->state = local;
this->state += local;
return Status::OK();
}

Expand All @@ -457,19 +455,15 @@ struct MinMaxImpl : public ScalarAggregator {
local.has_nulls = null_count > 0;
this->count += arr.length() - null_count;

if (local.has_nulls && !options.skip_nulls) {
this->state = local;
return Status::OK();
}

if (local.has_nulls) {
local += ConsumeWithNulls(arr);
} else { // All true values
if (!local.has_nulls) {
for (int64_t i = 0; i < arr.length(); i++) {
local.MergeOne(arr.GetView(i));
}
} else if (local.has_nulls && options.skip_nulls) {
local += ConsumeWithNulls(arr);
}
this->state = local;

this->state += local;
return Status::OK();
}

Expand Down Expand Up @@ -585,17 +579,14 @@ struct BooleanMinMaxImpl : public MinMaxImpl<BooleanType, SimdLevel> {

local.has_nulls = null_count > 0;
this->count += valid_count;
if (local.has_nulls && !options.skip_nulls) {
this->state = local;
return Status::OK();
if (!local.has_nulls || options.skip_nulls) {
const auto true_count = arr.true_count();
const auto false_count = valid_count - true_count;
local.max = true_count > 0;
local.min = false_count == 0;
}

const auto true_count = arr.true_count();
const auto false_count = valid_count - true_count;
local.max = true_count > 0;
local.min = false_count == 0;

this->state = local;
this->state += local;
return Status::OK();
}

Expand All @@ -604,17 +595,14 @@ struct BooleanMinMaxImpl : public MinMaxImpl<BooleanType, SimdLevel> {

local.has_nulls = !scalar.is_valid;
this->count += scalar.is_valid;
if (local.has_nulls && !options.skip_nulls) {
this->state = local;
return Status::OK();
if (!local.has_nulls || options.skip_nulls) {
const int true_count = scalar.is_valid && scalar.value;
const int false_count = scalar.is_valid && !scalar.value;
local.max = true_count > 0;
local.min = false_count == 0;
}

const int true_count = scalar.is_valid && scalar.value;
const int false_count = scalar.is_valid && !scalar.value;
local.max = true_count > 0;
local.min = false_count == 0;

this->state = local;
this->state += local;
return Status::OK();
}
};
Expand Down
2 changes: 1 addition & 1 deletion cpp/src/arrow/compute/kernels/aggregate_test.cc
Original file line number Diff line number Diff line change
Expand Up @@ -1563,7 +1563,7 @@ TEST_F(TestBooleanMinMaxKernel, Basics) {
TYPED_TEST_SUITE(TestIntegerMinMaxKernel, PhysicalIntegralArrowTypes);
TYPED_TEST(TestIntegerMinMaxKernel, Basics) {
ScalarAggregateOptions options;
std::vector<std::string> chunked_input1 = {"[5, 1, 2, 3, 4]", "[9, 1, null, 3, 4]"};
std::vector<std::string> chunked_input1 = {"[5, 1, 2, 3, 4]", "[9, 8, null, 3, 4]"};
std::vector<std::string> chunked_input2 = {"[5, null, 2, 3, 4]", "[9, 1, 2, 3, 4]"};
std::vector<std::string> chunked_input3 = {"[5, 1, 2, 3, null]", "[9, 1, null, 3, 4]"};
auto item_ty = default_type_instance<TypeParam>();
Expand Down
11 changes: 11 additions & 0 deletions r/tests/testthat/test-dataset.R
Original file line number Diff line number Diff line change
Expand Up @@ -618,6 +618,17 @@ test_that("UnionDataset handles InMemoryDatasets", {
expect_equal(actual, expected)
})

test_that("scalar aggregates with many batches (ARROW-16904)", {
tf <- tempfile()
write_parquet(data.frame(x = 1:100), tf, chunk_size = 20)

ds <- open_dataset(tf)
replicate(100, ds %>% summarize(min(x)) %>% pull())

expect_true(all(replicate(100, ds %>% summarize(min(x)) %>% pull()) == 1))
expect_true(all(replicate(100, ds %>% summarize(max(x)) %>% pull()) == 100))
})

test_that("map_batches", {
ds <- open_dataset(dataset_dir, partitioning = "part")

Expand Down