Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
31 changes: 23 additions & 8 deletions python/benchmarks/common.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,13 +23,21 @@
import numpy as np


KILOBYTE = 1 << 10
MEGABYTE = KILOBYTE * KILOBYTE


def _multiplicate_sequence(base, target_size):
q, r = divmod(target_size, len(base))
return [base] * q + [base[:r]]


def get_random_bytes(n):
rnd = np.random.RandomState(42)
def get_random_bytes(n, *, seed=42):
"""
Generate a random bytes object of size *n*.
Note the result might be compressible.
"""
rnd = np.random.RandomState(seed)
# Computing a huge random bytestring can be costly, so we get at most
# 100KB and duplicate the result as needed
base_size = 100003
Expand All @@ -43,22 +51,25 @@ def get_random_bytes(n):
return result


def get_random_ascii(n):
arr = np.frombuffer(get_random_bytes(n), dtype=np.int8) & 0x7f
def get_random_ascii(n, *, seed=42):
"""
Get a random ASCII-only unicode string of size *n*.
"""
arr = np.frombuffer(get_random_bytes(n, seed=seed), dtype=np.int8) & 0x7f
result, _ = codecs.ascii_decode(arr)
assert isinstance(result, str)
assert len(result) == n
return result


def _random_unicode_letters(n):
def _random_unicode_letters(n, *, seed=42):
"""
Generate a string of random unicode letters (slow).
"""
def _get_more_candidates():
return rnd.randint(0, sys.maxunicode, size=n).tolist()

rnd = np.random.RandomState(42)
rnd = np.random.RandomState(seed)
out = []
candidates = []

Expand All @@ -75,8 +86,12 @@ def _get_more_candidates():
_1024_random_unicode_letters = _random_unicode_letters(1024)


def get_random_unicode(n):
indices = np.frombuffer(get_random_bytes(n * 2), dtype=np.int16) & 1023
def get_random_unicode(n, *, seed=42):
"""
Get a random non-ASCII unicode string of size *n*.
"""
indices = np.frombuffer(get_random_bytes(n * 2, seed=seed),
dtype=np.int16) & 1023
unicode_arr = np.array(_1024_random_unicode_letters)[indices]

result = ''.join(unicode_arr.tolist())
Expand Down
67 changes: 67 additions & 0 deletions python/benchmarks/streaming.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import numpy as np
import pandas as pd
import pyarrow as pa

from . import common
from .common import KILOBYTE, MEGABYTE


def generate_chunks(total_size, nchunks, ncols, dtype=np.dtype('int64')):
rowsize = total_size // nchunks // ncols
assert rowsize % dtype.itemsize == 0
return [pd.DataFrame({
'c' + str(col): np.frombuffer(
common.get_random_bytes(rowsize, seed=col + 997 * chunk)).view(dtype)
for col in range(ncols)
})
for chunk in range(nchunks)]


class StreamReader(object):
"""
Benchmark in-memory streaming to a Pandas dataframe.
"""
total_size = 64 * MEGABYTE
ncols = 8
chunk_sizes = [16 * KILOBYTE, 256 * KILOBYTE, 8 * MEGABYTE]

param_names = ['chunk_size']
params = [chunk_sizes]

def setup(self, chunk_size):
# Note we're careful to stream different chunks instead of
# streaming N times the same chunk, so that we avoid operating
# entirely out of L1/L2.
chunks = generate_chunks(self.total_size,
nchunks=self.total_size // chunk_size,
ncols=self.ncols)
batches = [pa.RecordBatch.from_pandas(df)
for df in chunks]
schema = batches[0].schema
sink = pa.BufferOutputStream()
stream_writer = pa.RecordBatchStreamWriter(sink, schema)
for batch in batches:
stream_writer.write_batch(batch)
self.source = sink.get_result()

def time_read_to_dataframe(self, *args):
reader = pa.RecordBatchStreamReader(self.source)
table = reader.read_all()
df = table.to_pandas()