Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@ matrix:
- compiler: gcc
language: cpp
os: linux
jdk: openjdk8
env:
- ARROW_TRAVIS_USE_TOOLCHAIN=1
- ARROW_TRAVIS_VALGRIND=1
Expand All @@ -55,6 +56,7 @@ matrix:
- ARROW_TRAVIS_PYTHON_BENCHMARKS=1
- ARROW_TRAVIS_PYTHON_DOCS=1
- ARROW_BUILD_WARNING_LEVEL=CHECKIN
- ARROW_TRAVIS_PYTHON_JVM=1
- CC="clang-6.0"
- CXX="clang++-6.0"
before_script:
Expand All @@ -71,6 +73,8 @@ matrix:
# All test steps are required for accurate C++ coverage info
- $TRAVIS_BUILD_DIR/ci/travis_script_cpp.sh
- $TRAVIS_BUILD_DIR/ci/travis_build_parquet_cpp.sh
# Build Arrow Java to test the pyarrow<->JVM in-process bridge
- $TRAVIS_BUILD_DIR/ci/travis_script_java.sh
- $TRAVIS_BUILD_DIR/ci/travis_script_python.sh 2.7
- $TRAVIS_BUILD_DIR/ci/travis_script_python.sh 3.6
- $TRAVIS_BUILD_DIR/ci/travis_upload_cpp_coverage.sh
Expand Down
5 changes: 5 additions & 0 deletions ci/travis_script_python.sh
Original file line number Diff line number Diff line change
Expand Up @@ -36,10 +36,15 @@ source activate $CONDA_ENV_DIR
python --version
which python

if [ $ARROW_TRAVIS_PYTHON_JVM == "1" ]; then
CONDA_JVM_DEPS="jpype1"
fi

conda install -y -q pip \
nomkl \
cloudpickle \
numpy=1.13.1 \
${CONDA_JVM_DEPS} \
pandas \
cython

Expand Down
255 changes: 255 additions & 0 deletions python/pyarrow/jvm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,255 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

JPype is not mentioned in this file; this might bear mentioning in one or more of the function docstrings

"""
Functions to interact with Arrow memory allocated by Arrow Java.

These functions convert the objects holding the metadata, the actual
data is not copied at all.

This will only work with a JVM running in the same process such as provided
through jpype. Modules that talk to a remote JVM like py4j will not work as the
memory addresses reported by them are not reachable in the python process.
"""


import pyarrow as pa


def jvm_buffer(arrowbuf):
"""
Construct an Arrow buffer from io.netty.buffer.ArrowBuf

Parameters
----------

arrowbuf: io.netty.buffer.ArrowBuf
Arrow Buffer representation on the JVM

Returns
-------
pyarrow.Buffer
Python Buffer that references the JVM memory
"""
address = arrowbuf.memoryAddress()
size = arrowbuf.capacity()
return pa.foreign_buffer(address, size, arrowbuf.unwrap())


def _from_jvm_int_type(jvm_type):
"""
Convert a JVM int type to its Python equivalent.

Parameters
----------
jvm_type: org.apache.arrow.vector.types.pojo.ArrowType$Int

Returns
-------
typ: pyarrow.DataType
"""
if jvm_type.isSigned:
if jvm_type.bitWidth == 8:
return pa.int8()
elif jvm_type.bitWidth == 16:
return pa.int16()
elif jvm_type.bitWidth == 32:
return pa.int32()
elif jvm_type.bitWidth == 64:
return pa.int64()
else:
if jvm_type.bitWidth == 8:
return pa.uint8()
elif jvm_type.bitWidth == 16:
return pa.uint16()
elif jvm_type.bitWidth == 32:
return pa.uint32()
elif jvm_type.bitWidth == 64:
return pa.uint64()


def _from_jvm_float_type(jvm_type):
"""
Convert a JVM float type to its Python equivalent.

Parameters
----------
jvm_type: org.apache.arrow.vector.types.pojo.ArrowType$FloatingPoint

Returns
-------
typ: pyarrow.DataType
"""
precision = jvm_type.getPrecision().toString()
if precision == 'HALF':
return pa.float16()
elif precision == 'SINGLE':
return pa.float32()
elif precision == 'DOUBLE':
return pa.float64()


def _from_jvm_time_type(jvm_type):
"""
Convert a JVM time type to its Python equivalent.

Parameters
----------
jvm_type: org.apache.arrow.vector.types.pojo.ArrowType$Time

Returns
-------
typ: pyarrow.DataType
"""
time_unit = jvm_type.getUnit().toString()
if time_unit == 'SECOND':
assert jvm_type.bitWidth == 32
return pa.time32('s')
elif time_unit == 'MILLISECOND':
assert jvm_type.bitWidth == 32
return pa.time32('ms')
elif time_unit == 'MICROSECOND':
assert jvm_type.bitWidth == 64
return pa.time64('us')
elif time_unit == 'NANOSECOND':
assert jvm_type.bitWidth == 64
return pa.time64('ns')


def _from_jvm_timestamp_type(jvm_type):
"""
Convert a JVM timestamp type to its Python equivalent.

Parameters
----------
jvm_type: org.apache.arrow.vector.types.pojo.ArrowType$Timestamp

Returns
-------
typ: pyarrow.DataType
"""
time_unit = jvm_type.getUnit().toString()
timezone = jvm_type.getTimezone()
if time_unit == 'SECOND':
return pa.timestamp('s', tz=timezone)
elif time_unit == 'MILLISECOND':
return pa.timestamp('ms', tz=timezone)
elif time_unit == 'MICROSECOND':
return pa.timestamp('us', tz=timezone)
elif time_unit == 'NANOSECOND':
return pa.timestamp('ns', tz=timezone)


def _from_jvm_date_type(jvm_type):
"""
Convert a JVM date type to its Python equivalent

Parameters
----------
jvm_type: org.apache.arrow.vector.types.pojo.ArrowType$Date

Returns
-------
typ: pyarrow.DataType
"""
day_unit = jvm_type.getUnit().toString()
if day_unit == 'DAY':
return pa.date32()
elif day_unit == 'MILLISECOND':
return pa.date64()


def field(jvm_field):
"""
Construct a Field from a org.apache.arrow.vector.types.pojo.Field
instance.

Parameters
----------
jvm_field: org.apache.arrow.vector.types.pojo.Field

Returns
-------
pyarrow.Field
"""
name = jvm_field.getName()
jvm_type = jvm_field.getType()

typ = None
if not jvm_type.isComplex():
type_str = jvm_type.getTypeID().toString()
if type_str == 'Null':
typ = pa.null()
elif type_str == 'Int':
typ = _from_jvm_int_type(jvm_type)
elif type_str == 'FloatingPoint':
typ = _from_jvm_float_type(jvm_type)
elif type_str == 'Utf8':
typ = pa.string()
elif type_str == 'Binary':
typ = pa.binary()
elif type_str == 'FixedSizeBinary':
typ = pa.binary(jvm_type.getByteWidth())
elif type_str == 'Bool':
typ = pa.bool_()
elif type_str == 'Time':
typ = _from_jvm_time_type(jvm_type)
elif type_str == 'Timestamp':
typ = _from_jvm_timestamp_type(jvm_type)
elif type_str == 'Date':
typ = _from_jvm_date_type(jvm_type)
elif type_str == 'Decimal':
typ = pa.decimal128(jvm_type.getPrecision(), jvm_type.getScale())
else:
raise NotImplementedError(
"Unsupported JVM type: {}".format(type_str))
else:
# TODO: The following JVM types are not implemented:
# Struct, List, FixedSizeList, Union, Dictionary
raise NotImplementedError(
"JVM field conversion only implemented for primitive types.")

nullable = jvm_field.isNullable()
if jvm_field.getMetadata().isEmpty():
metadata = None
else:
metadata = dict(jvm_field.getMetadata())
return pa.field(name, typ, nullable, metadata)


def array(jvm_array):
"""
Construct an (Python) Array from its JVM equivalent.

Parameters
----------
jvm_array : org.apache.arrow.vector.ValueVector

Returns
-------
array : Array
"""
if jvm_array.getField().getType().isComplex():
minor_type_str = jvm_array.getMinorType().toString()
raise NotImplementedError(
"Cannot convert JVM Arrow array of type {},"
" complex types not yet implemented.".format(minor_type_str))
dtype = field(jvm_array.getField()).type
length = jvm_array.getValueCount()
buffers = [jvm_buffer(buf)
for buf in list(jvm_array.getBuffers(False))]
null_count = jvm_array.getNullCount()
return pa.Array.from_buffers(dtype, length, buffers, null_count)
Loading