Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
303 changes: 303 additions & 0 deletions datafusion/src/physical_plan/hyperloglog/mod.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,303 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! # HyperLogLog
//!
//! `hyperloglog` is a module that contains a modified version
//! of [redis's implementation](https://github.com/redis/redis/blob/4930d19e70c391750479951022e207e19111eb55/src/hyperloglog.c)
//! with some modification based on strong assumption of usage
//! within datafusion, so that [`approx_distinct`] function can
//! be efficiently implemented.
//!
//! Specifically, like Redis's version, this HLL structure uses
//! 2**14 = 16384 registers, which means the standard error is
//! 1.04/(16384**0.5) = 0.8125%. Unlike Redis, the register takes
//! up full [`u8`] size instead of a raw int* and thus saves some
//! tricky bit shifting techniques used in the original version.
//! This results in a memory usage increase from 12Kib to 16Kib.
//! Also only the dense version is adopted, so there's no automatic
//! conversion, largely to simplify the code.
//!
//! This module also borrows some code structure from [pdatastructs.rs](https://github.com/crepererum/pdatastructs.rs/blob/3997ed50f6b6871c9e53c4c5e0f48f431405fc63/src/hyperloglog.rs).

// TODO remove this when hooked up with the rest
#![allow(dead_code)]

use ahash::{AHasher, RandomState};
use std::hash::{BuildHasher, Hash, Hasher};
use std::marker::PhantomData;

/// The greater is P, the smaller the error.
const HLL_P: usize = 14_usize;
/// the number of bits of the hash value used determining the number of leading zeros
const HLL_Q: usize = 64_usize - HLL_P;
const NUM_REGISTERS: usize = 1_usize << HLL_P;
/// mask to obtain index into the registers
const HLL_P_MASK: u64 = (NUM_REGISTERS as u64) - 1;

#[derive(Clone, Debug)]
pub(crate) struct HyperLogLog<T>
where
T: Hash + ?Sized,
{
registers: [u8; NUM_REGISTERS],
phantom: PhantomData<T>,
}

/// fixed seed for the hashing so that values are consistent across runs
const SEED: RandomState = RandomState::with_seeds(
0x885f6cab121d01a3_u64,
0x71e4379f2976ad8f_u64,
0xbf30173dd28a8816_u64,
0x0eaea5d736d733a4_u64,
);

impl<T> HyperLogLog<T>
where
T: Hash + ?Sized,
{
/// Creates a new, empty HyperLogLog.
pub fn new() -> Self {
let registers = [0; NUM_REGISTERS];
Self {
registers,
phantom: PhantomData,
}
}

/// choice of hash function: ahash is already an dependency
/// and it fits the requirements of being a 64bit hash with
/// reasonable performance.
#[inline]
fn hash_value(&self, obj: &T) -> u64 {
let mut hasher: AHasher = SEED.build_hasher();
obj.hash(&mut hasher);
hasher.finish()
}

/// Adds an element to the HyperLogLog.
pub fn add(&mut self, obj: &T) {
let hash = self.hash_value(obj);
let index = (hash & HLL_P_MASK) as usize;
let p = ((hash >> HLL_P) | (1_u64 << HLL_Q)).trailing_zeros() + 1;
self.registers[index] = self.registers[index].max(p as u8);
}

/// Get the register histogram (each value in register index into
/// the histogram; u32 is enough because we only have 2**14=16384 registers
#[inline]
fn get_histogram(&self) -> [u32; HLL_Q + 2] {
let mut histogram = [0; HLL_Q + 2];
// hopefully this can be unrolled
for r in self.registers {
histogram[r as usize] += 1;
}
histogram
}

/// Guess the number of unique elements seen by the HyperLogLog.
pub fn count(&self) -> usize {
let histogram = self.get_histogram();
let m = NUM_REGISTERS as f64;
let mut z = m * hll_tau((m - histogram[HLL_Q + 1] as f64) / m);
for i in histogram[1..=HLL_Q].iter().rev() {
z += *i as f64;
z *= 0.5;
}
z += m * hll_sigma(histogram[0] as f64 / m);
(0.5 / 2_f64.ln() * m * m / z).round() as usize
}
}

/// Helper function sigma as defined in
/// "New cardinality estimation algorithms for HyperLogLog sketches"
/// Otmar Ertl, arXiv:1702.01284
#[inline]
fn hll_sigma(x: f64) -> f64 {
if x == 1. {
f64::INFINITY
} else {
let mut y = 1.0;
let mut z = x;
let mut x = x;
loop {
x *= x;
let z_prime = z;
z += x * y;
y += y;
if z_prime == z {
break;
}
}
z
}
}

/// Helper function tau as defined in
/// "New cardinality estimation algorithms for HyperLogLog sketches"
/// Otmar Ertl, arXiv:1702.01284
#[inline]
fn hll_tau(x: f64) -> f64 {
if x == 0.0 || x == 1.0 {
0.0
} else {
let mut y = 1.0;
let mut z = 1.0 - x;
let mut x = x;
loop {
x = x.sqrt();
let z_prime = z;
y *= 0.5;
z -= (1.0 - x).powi(2) * y;
if z_prime == z {
break;
}
}
z / 3.0
}
}

impl<T> Extend<T> for HyperLogLog<T>
where
T: Hash,
{
fn extend<S: IntoIterator<Item = T>>(&mut self, iter: S) {
for elem in iter {
self.add(&elem);
}
}
}

impl<'a, T> Extend<&'a T> for HyperLogLog<T>
where
T: 'a + Hash + ?Sized,
{
fn extend<S: IntoIterator<Item = &'a T>>(&mut self, iter: S) {
for elem in iter {
self.add(elem);
}
}
}

#[cfg(test)]
mod tests {
use super::{HyperLogLog, NUM_REGISTERS};

fn compare_with_delta(got: usize, expected: usize) {
let expected = expected as f64;
let diff = (got as f64) - expected;
let diff = diff.abs() / expected;
// times 6 because we want the tests to be stable
// so we allow a rather large margin of error
// this is adopted from redis's unit test version as well
let margin = 1.04 / ((NUM_REGISTERS as f64).sqrt()) * 6.0;
assert!(
diff <= margin,
"{} is not near {} percent of {} which is ({}, {})",
got,
margin,
expected,
expected * (1.0 - margin),
expected * (1.0 + margin)
);
}

macro_rules! sized_number_test {
($SIZE: expr, $T: tt) => {{
let mut hll = HyperLogLog::<$T>::new();
for i in 0..$SIZE {
hll.add(&i);
}
compare_with_delta(hll.count(), $SIZE);
}};
}

macro_rules! typed_large_number_test {
($SIZE: expr) => {{
sized_number_test!($SIZE, u64);
sized_number_test!($SIZE, u128);
sized_number_test!($SIZE, i64);
sized_number_test!($SIZE, i128);
}};
}

macro_rules! typed_number_test {
($SIZE: expr) => {{
sized_number_test!($SIZE, u16);
sized_number_test!($SIZE, u32);
sized_number_test!($SIZE, i16);
sized_number_test!($SIZE, i32);
typed_large_number_test!($SIZE);
}};
}

#[test]
fn test_empty() {
let hll = HyperLogLog::<u64>::new();
assert_eq!(hll.count(), 0);
}

#[test]
fn test_one() {
let mut hll = HyperLogLog::<u64>::new();
hll.add(&1);
assert_eq!(hll.count(), 1);
}

#[test]
fn test_number_100() {
typed_number_test!(100);
}

#[test]
fn test_number_1k() {
typed_number_test!(1_000);
}

#[test]
fn test_number_10k() {
typed_number_test!(10_000);
}

#[test]
fn test_number_100k() {
typed_large_number_test!(100_000);
}

#[test]
fn test_number_1m() {
typed_large_number_test!(1_000_000);
}

#[test]
fn test_u8() {
let mut hll = HyperLogLog::<[u8]>::new();
for i in 0..1000 {
let s = i.to_string();
let b = s.as_bytes();
hll.add(b);
}
compare_with_delta(hll.count(), 1000);
}

#[test]
fn test_string() {
let mut hll = HyperLogLog::<String>::new();
hll.extend((0..1000).map(|i| i.to_string()));
compare_with_delta(hll.count(), 1000);
}
}
3 changes: 2 additions & 1 deletion datafusion/src/physical_plan/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@ pub struct Statistics {
/// Statistics on a column level
pub column_statistics: Option<Vec<ColumnStatistics>>,
/// If true, any field that is `Some(..)` is the actual value in the data provided by the operator (it is not
/// an estimate). Any or all other fields might still be None, in which case no information is known.
/// an estimate). Any or all other fields might still be None, in which case no information is known.
/// if false, any field that is `Some(..)` may contain an inexact estimate and may not be the actual value.
pub is_exact: bool,
}
Expand Down Expand Up @@ -625,6 +625,7 @@ pub mod functions;
pub mod hash_aggregate;
pub mod hash_join;
pub mod hash_utils;
pub(crate) mod hyperloglog;
pub mod join_utils;
pub mod json;
pub mod limit;
Expand Down