Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -2137,7 +2137,9 @@ def convert_square(node, **kwargs):
)
return [tensor_node, node]

# sum_axis is equivalent to sum in MXNet
@mx_op.register("sum")
@mx_op.register("sum_axis")
def convert_sum(node, **kwargs):
"""Map MXNet's sum operator attributes to onnx's ReduceSum operator
and return the created node.
Expand Down Expand Up @@ -4476,12 +4478,12 @@ def convert_RNN(node, **kwargs):
initial_h = input_nodes[2]

nodes = []
create_tensor([0], name+'_0', kwargs['initializer'])

mode = str(attrs.get('mode'))
if mode == 'lstm':
initial_c = input_nodes[3]
if num_layers == 2:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([8*state_size], name+'_8*state_size', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_4*state_size^2', kwargs['initializer'])
create_tensor([1, 4*state_size, state_size], name+'_WR_shape', kwargs['initializer'])
Expand Down Expand Up @@ -4553,7 +4555,6 @@ def convert_RNN(node, **kwargs):
make_node('Concat', [name+'_lstm0_c', name+'_lstm1_c'], [name+'2'], axis=0),
]
elif num_layers == 1:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([1], name+'_1', kwargs['initializer'])
create_tensor([4*state_size], name+'_4*state_size', kwargs['initializer'])
create_tensor([8*state_size], name+'_8*state_size', kwargs['initializer'])
Expand Down Expand Up @@ -4598,7 +4599,6 @@ def convert_RNN(node, **kwargs):

elif mode == 'gru':
if num_layers == 2:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([6*state_size], name+'_6*state_size', kwargs['initializer'])
create_tensor([3*state_size*state_size], name+'_3*state_size^2', kwargs['initializer'])
create_tensor([1, 3*state_size, state_size], name+'_WR_shape', kwargs['initializer'])
Expand Down Expand Up @@ -4669,7 +4669,7 @@ def convert_RNN(node, **kwargs):
]

elif num_layers == 1:
create_tensor([0], name+'_0', kwargs['initializer'])

create_tensor([1], name+'_1', kwargs['initializer'])
create_tensor([3*state_size], name+'_3*state_size', kwargs['initializer'])
create_tensor([6*state_size], name+'_6*state_size', kwargs['initializer'])
Expand Down Expand Up @@ -4712,6 +4712,100 @@ def convert_RNN(node, **kwargs):
else:
raise NotImplementedError('Currently RNN onnx export only supports num_layers equals to 1 or 2')

elif mode in ['rnn_tanh', 'rnn_relu']:
activations = ['Tanh']
if mode == 'rnn_relu':
activations = ['Relu']
if num_layers == 2:

create_tensor([2*state_size], name+'_2*state_size', kwargs['initializer'])
create_tensor([state_size*state_size], name+'_state_size^2', kwargs['initializer'])
create_tensor([1, state_size, state_size], name+'_WR_shape', kwargs['initializer'])
create_tensor([1, 2*state_size], name+'_B_shape', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_WR_offset', kwargs['initializer'])

nodes += [
make_node('Shape', [data], [name+'_data_shape']),
make_node('Split', [name+'_data_shape'], [name+'_seq_length', name+'_batch_size', name+'_input_size']),

# Layer 0
# get W
make_node('Slice', [param, name+'_0', name+'_state_size^2'], [name+'_W0_1d']),
make_node('Reshape', [name+'_W0_1d', name+'_WR_shape'], [name+'_W0']),
# get R
make_node('Add', [name+'_state_size^2', name+'_state_size^2'], [name+'_R0_offset']),
make_node('Slice', [param, name+'_state_size^2', name+'_R0_offset'], [name+'_R0_1d']),
make_node('Reshape', [name+'_R0_1d', name+'_WR_shape'], [name+'_R0']),
# get B
make_node('Add', [name+'_WR_offset', name+'_2*state_size'], [name+'_B0_offset']),
make_node('Slice', [param, name+'_WR_offset', name+'_B0_offset'], [name+'_B0_1d']),
make_node('Reshape', [name+'_B0_1d', name+'_B_shape'], [name+'_B0']),
# get initial states
make_node('Split', [initial_h], [name+'_initial_h0', name+'_initial_h1'], axis=0),
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# Layer 0 RNN
make_node('RNN', [data, name+'_W0', name+'_R0', name+'_B0', name+'_seq_len', name+'_initial_h0'],
[name+'_rnn0_out_', name+'_rnn0_h'], hidden_size=state_size, activations=activations),
make_node('Squeeze', [name+'_rnn0_out_'], [name+'_rnn0_out'], axes=[1]),

# Layer 1
# get W
make_node('Add', [name+'_R0_offset', name+'_state_size^2'], [name+'_W1_offset']),
make_node('Slice', [param, name+'_R0_offset', name+'_W1_offset'], [name+'_W1_1d']),
make_node('Reshape', [name+'_W1_1d', name+'_WR_shape'], [name+'_W1']),
# get R
make_node('Slice', [param, name+'_W1_offset', name+'_WR_offset'], [name+'_R1_1d']),
make_node('Reshape', [name+'_R1_1d', name+'_WR_shape'], [name+'_R1']),
# get B
make_node('Add', [name+'_B0_offset', name+'_2*state_size'], [name+'_B1_offset']),
make_node('Slice', [param, name+'_B0_offset', name+'_B1_offset'], [name+'_B1_1d']),
make_node('Reshape', [name+'_B1_1d', name+'_B_shape'], [name+'_B1']),
# Layer 1 RNN
make_node('RNN', [name+'_rnn0_out', name+'_W1', name+'_R1', name+'_B1', name+'_seq_len',
name+'_initial_h1'], [name+'_rnn1_out_', name+'_rnn1_h'],
hidden_size=state_size, activations=activations),
make_node('Squeeze', [name+'_rnn1_out_'], [name], axes=[1]),
make_node('Concat', [name+'_rnn0_h', name+'_rnn1_h'], [name+'1'], axis=0)
]

elif num_layers == 1:

create_tensor([1], name+'_1', kwargs['initializer'])
create_tensor([state_size], name+'_state_size', kwargs['initializer'])
create_tensor([2*state_size], name+'_2*state_size', kwargs['initializer'])
create_tensor([state_size*state_size], name+'_state_size^2', kwargs['initializer'])
create_tensor([1, state_size, state_size], name+'_R_shape', kwargs['initializer'])
create_tensor([1, 2*state_size], name+'_B_shape', kwargs['initializer'])

nodes += [
make_node('Shape', [data], [name+'_data_shape']),
make_node('Split', [name+'_data_shape'],
[name+'_seq_length', name+'_batch_size', name+'_input_size'], name='split0'),
# get W
make_node('Mul', [name+'_state_size', name+'_input_size'], [name+'_mul0']),
make_node('Slice', [param, name+'_0', name+'_mul0'], [name+'_W_1d']),
make_node('Concat', [name+'_1', name+'_state_size', name+'_input_size'], [name+'_W_shape'], axis=0),
make_node('Reshape', [name+'_W_1d', name+'_W_shape'], [name+'_W']),
# get R
make_node('Add', [name+'_mul0', name+'_state_size^2'], [name+'_add0']),
make_node('Slice', [param, name+'_mul0', name+'_add0'], [name+'_R_1d']),
make_node('Reshape', [name+'_R_1d', name+'_R_shape'], [name+'_R']),
# get B
make_node('Add', [name+'_add0', name+'_2*state_size'], [name+'_add1']),
make_node('Slice', [param, name+'_add0', name+'_add1'], [name+'_B_1d']),
make_node('Reshape', [name+'_B_1d', name+'_B_shape'], [name+'_B']),
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# compute RNN
make_node('RNN', [data, name+'_W', name+'_R', name+'_B', name+'_seq_len', initial_h],
[name+'0_', name+'1'], hidden_size=state_size, activations=activations),
make_node('Squeeze', [name+'0_'], [name], axes=[1]),
]
else:
raise NotImplementedError('Currently RNN onnx export only supports num_layers equals to 1 or 2')
else:
raise NotImplementedError(f"Currently RNN onnx export does not support {mode} mode")
return nodes
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1047,11 +1047,12 @@ def convert_RNN(node, **kwargs):
nodes = []

mode = str(attrs.get('mode'))
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([1], name+'_1', kwargs['initializer'])

if mode == 'lstm':
initial_c = input_nodes[3]
if num_layers == 2:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([8*state_size], name+'_8*state_size', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_4*state_size^2', kwargs['initializer'])
create_tensor([1, 4*state_size, state_size], name+'_WR_shape', kwargs['initializer'])
Expand Down Expand Up @@ -1123,7 +1124,6 @@ def convert_RNN(node, **kwargs):
make_node('Concat', [name+'_lstm0_c', name+'_lstm1_c'], [name+'2'], axis=0),
]
elif num_layers == 1:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([4*state_size], name+'_4*state_size', kwargs['initializer'])
create_tensor([8*state_size], name+'_8*state_size', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_4*state_size^2', kwargs['initializer'])
Expand Down Expand Up @@ -1167,7 +1167,6 @@ def convert_RNN(node, **kwargs):

elif mode == 'gru':
if num_layers == 2:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([6*state_size], name+'_6*state_size', kwargs['initializer'])
create_tensor([3*state_size*state_size], name+'_3*state_size^2', kwargs['initializer'])
create_tensor([1, 3*state_size, state_size], name+'_WR_shape', kwargs['initializer'])
Expand Down Expand Up @@ -1238,7 +1237,6 @@ def convert_RNN(node, **kwargs):
]

elif num_layers == 1:
create_tensor([0], name+'_0', kwargs['initializer'])
create_tensor([3*state_size], name+'_3*state_size', kwargs['initializer'])
create_tensor([6*state_size], name+'_6*state_size', kwargs['initializer'])
create_tensor([3*state_size*state_size], name+'_3*state_size^2', kwargs['initializer'])
Expand Down Expand Up @@ -1272,14 +1270,106 @@ def convert_RNN(node, **kwargs):
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# compute LSTM
# compute GRU
make_node('GRU', [data, name+'_W', name+'_R', name+'_B', name+'_seq_len', initial_h],
[name+'0_', name+'1'], hidden_size=state_size, linear_before_reset=1),
make_node('Squeeze', [name+'0_', name+'_1'], [name]),
]
else:
raise NotImplementedError('Currently RNN onnx export only supports num_layers equals to 1 or 2')

elif mode in ['rnn_tanh', 'rnn_relu']:
activations = ['Tanh']
if mode == 'rnn_relu':
activations = ['Relu']
if num_layers == 2:
create_tensor([2*state_size], name+'_2*state_size', kwargs['initializer'])
create_tensor([state_size*state_size], name+'_state_size^2', kwargs['initializer'])
create_tensor([1, state_size, state_size], name+'_WR_shape', kwargs['initializer'])
create_tensor([1, 2*state_size], name+'_B_shape', kwargs['initializer'])
create_tensor([4*state_size*state_size], name+'_WR_offset', kwargs['initializer'])

nodes += [
make_node('Shape', [data], [name+'_data_shape']),
make_node('Split', [name+'_data_shape'], [name+'_seq_length', name+'_batch_size', name+'_input_size']),

# Layer 0
# get W
make_node('Slice', [param, name+'_0', name+'_state_size^2'], [name+'_W0_1d']),
make_node('Reshape', [name+'_W0_1d', name+'_WR_shape'], [name+'_W0']),
# get R
make_node('Add', [name+'_state_size^2', name+'_state_size^2'], [name+'_R0_offset']),
make_node('Slice', [param, name+'_state_size^2', name+'_R0_offset'], [name+'_R0_1d']),
make_node('Reshape', [name+'_R0_1d', name+'_WR_shape'], [name+'_R0']),
# get B
make_node('Add', [name+'_WR_offset', name+'_2*state_size'], [name+'_B0_offset']),
make_node('Slice', [param, name+'_WR_offset', name+'_B0_offset'], [name+'_B0_1d']),
make_node('Reshape', [name+'_B0_1d', name+'_B_shape'], [name+'_B0']),
# get initial states
make_node('Split', [initial_h], [name+'_initial_h0', name+'_initial_h1'], axis=0),
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# Layer 0 RNN
make_node('RNN', [data, name+'_W0', name+'_R0', name+'_B0', name+'_seq_len',
name+'_initial_h0'], [name+'_rnn0_out_', name+'_rnn0_h'],
hidden_size=state_size, activations=activations),
make_node('Squeeze', [name+'_rnn0_out_', name+'_1'], [name+'_rnn0_out']),

# Layer 1
# get W
make_node('Add', [name+'_R0_offset', name+'_state_size^2'], [name+'_W1_offset']),
make_node('Slice', [param, name+'_R0_offset', name+'_W1_offset'], [name+'_W1_1d']),
make_node('Reshape', [name+'_W1_1d', name+'_WR_shape'], [name+'_W1']),
# get R
make_node('Slice', [param, name+'_W1_offset', name+'_WR_offset'], [name+'_R1_1d']),
make_node('Reshape', [name+'_R1_1d', name+'_WR_shape'], [name+'_R1']),
# get B
make_node('Add', [name+'_B0_offset', name+'_2*state_size'], [name+'_B1_offset']),
make_node('Slice', [param, name+'_B0_offset', name+'_B1_offset'], [name+'_B1_1d']),
make_node('Reshape', [name+'_B1_1d', name+'_B_shape'], [name+'_B1']),
# Layer 1 RNN
make_node('RNN', [name+'_rnn0_out', name+'_W1', name+'_R1', name+'_B1', name+'_seq_len',
name+'_initial_h1'], [name+'_rnn1_out_', name+'_rnn1_h'],
hidden_size=state_size, activations=activations),
make_node('Squeeze', [name+'_rnn1_out_', name+'_1'], [name]),
make_node('Concat', [name+'_rnn0_h', name+'_rnn1_h'], [name+'1'], axis=0)
]

elif num_layers == 1:
create_tensor([state_size], name+'_state_size', kwargs['initializer'])
create_tensor([2*state_size], name+'_2*state_size', kwargs['initializer'])
create_tensor([state_size*state_size], name+'_state_size^2', kwargs['initializer'])
create_tensor([1, state_size, state_size], name+'_R_shape', kwargs['initializer'])
create_tensor([1, 2*state_size], name+'_B_shape', kwargs['initializer'])

nodes += [
make_node('Shape', [data], [name+'_data_shape']),
make_node('Split', [name+'_data_shape'], [name+'_seq_length', name+'_batch_size',
name+'_input_size'], name='split0'),
# get W
make_node('Mul', [name+'_state_size', name+'_input_size'], [name+'_mul0']),
make_node('Slice', [param, name+'_0', name+'_mul0'], [name+'_W_1d']),
make_node('Concat', [name+'_1', name+'_state_size', name+'_input_size'], [name+'_W_shape'], axis=0),
make_node('Reshape', [name+'_W_1d', name+'_W_shape'], [name+'_W']),
# get R
make_node('Add', [name+'_mul0', name+'_state_size^2'], [name+'_add0']),
make_node('Slice', [param, name+'_mul0', name+'_add0'], [name+'_R_1d']),
make_node('Reshape', [name+'_R_1d', name+'_R_shape'], [name+'_R']),
# get B
make_node('Add', [name+'_add0', name+'_2*state_size'], [name+'_add1']),
make_node('Slice', [param, name+'_add0', name+'_add1'], [name+'_B_1d']),
make_node('Reshape', [name+'_B_1d', name+'_B_shape'], [name+'_B']),
# get seq_len
make_node('Tile', [name+'_seq_length', name+'_batch_size'], [name+'_seq_len_']),
make_node("Cast", [name+'_seq_len_'], [name+"_seq_len"], to=int(TensorProto.INT32)),
# compute RNN
make_node('RNN', [data, name+'_W', name+'_R', name+'_B', name+'_seq_len', initial_h],
[name+'0_', name+'1'], hidden_size=state_size, activations=activations),
make_node('Squeeze', [name+'0_', name+'_1'], [name]),
]
else:
raise NotImplementedError('Currently RNN onnx export only supports num_layers equals to 1 or 2')
else:
raise NotImplementedError(f"Currently RNN onnx export does not support {mode} mode")
return nodes
Expand Down
Loading