Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -4525,7 +4525,7 @@ def convert_RNN(node, **kwargs):
create_tensor([state_size], name+'_state_size', kwargs['initializer'])
create_tensor([direction], name+'_direction', kwargs['initializer'])

tensor_1 = make_tensor(name+'_1_f', dtype, [1], [1])
tensor_1 = make_tensor(name+'_1_f', onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[dtype], [1], [1])

nodes = [
make_node('Shape', [data], [name+'_data_shape']),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -208,7 +208,6 @@ def create_tensor(tensor_list, tensor_name, initializer, dtype='int64'):
raw=False
)
initializer.append(tensor)
return tensor


def create_helper_trans_node(node_name, input_node):
Expand Down Expand Up @@ -1009,7 +1008,7 @@ def convert_RNN(node, **kwargs):
"""Map MXNet's RNN operator attributes to onnx's operators
and return the created node.
"""
from onnx.helper import make_node
from onnx.helper import make_node, make_tensor
from onnx import TensorProto

name, input_nodes, attrs = get_inputs(node, kwargs)
Expand Down Expand Up @@ -1047,7 +1046,8 @@ def convert_RNN(node, **kwargs):
create_tensor([1], name+'_1', kwargs['initializer'])
create_tensor([state_size], name+'_state_size', kwargs['initializer'])
create_tensor([direction], name+'_direction', kwargs['initializer'])
tensor_1 = create_tensor([1], name+'_1_f', kwargs['initializer'], dtype)

tensor_1 = make_tensor(name+'_1_f', onnx.mapping.NP_TYPE_TO_TENSOR_TYPE[dtype], [1], [1])

nodes = [
make_node('Shape', [data], [name+'_data_shape']),
Expand Down