Skip to content
This repository was archived by the owner on Nov 17, 2023. It is now read-only.
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
72 changes: 36 additions & 36 deletions tests/python/unittest/test_operator.py
Original file line number Diff line number Diff line change
Expand Up @@ -4188,47 +4188,47 @@ def grad_helper(grad_in, axis, idx):
for _ in range(idx_ndim):
idx_shape += (np.random.randint(low=1, high=5), )

data = mx.sym.Variable('a')
idx = mx.sym.Variable('indices')
idx = mx.sym.BlockGrad(idx)
result = mx.sym.take(a=data, indices=idx, axis=axis, mode=mode)
exe = result._simple_bind(default_context(), a=data_shape,
indices=idx_shape)
data_real = np.random.normal(size=data_shape).astype('float32')
if out_of_range:
idx_real = np.random.randint(low=-data_shape[axis], high=data_shape[axis], size=idx_shape)
if mode == 'raise':
idx_real[idx_real == 0] = 1
idx_real *= data_shape[axis]
else:
idx_real = np.random.randint(low=0, high=data_shape[axis], size=idx_shape)
if axis < 0:
axis += len(data_shape)
data = mx.sym.Variable('a')
idx = mx.sym.Variable('indices')
idx = mx.sym.BlockGrad(idx)
result = mx.sym.take(a=data, indices=idx, axis=axis, mode=mode)
exe = result._simple_bind(default_context(), a=data_shape,
indices=idx_shape)
data_real = np.random.normal(size=data_shape).astype('float32')
if out_of_range:
idx_real = np.random.randint(low=-data_shape[axis], high=data_shape[axis], size=idx_shape)
if mode == 'raise':
idx_real[idx_real == 0] = 1
idx_real *= data_shape[axis]
else:
idx_real = np.random.randint(low=0, high=data_shape[axis], size=idx_shape)
if axis < 0:
axis += len(data_shape)

grad_out = np.ones((data_shape[0:axis] if axis > 0 else ()) + idx_shape + (data_shape[axis+1:] if axis < len(data_shape) - 1 else ()), dtype='float32')
grad_in = np.zeros(data_shape, dtype='float32')
grad_out = np.ones((data_shape[0:axis] if axis > 0 else ()) + idx_shape + (data_shape[axis+1:] if axis < len(data_shape) - 1 else ()), dtype='float32')
grad_in = np.zeros(data_shape, dtype='float32')

exe.arg_dict['a'][:] = mx.nd.array(data_real)
exe.arg_dict['indices'][:] = mx.nd.array(idx_real)
exe.forward(is_train=True)
if out_of_range and mode == 'raise':
try:
mx_out = exe.outputs[0].asnumpy()
except MXNetError as e:
return
else:
# Did not raise exception
assert False, "did not raise %s" % MXNetError.__name__
exe.arg_dict['a'][:] = mx.nd.array(data_real)
exe.arg_dict['indices'][:] = mx.nd.array(idx_real)
exe.forward(is_train=True)
if out_of_range and mode == 'raise':
try:
mx_out = exe.outputs[0].asnumpy()
except MXNetError as e:
return
else:
# Did not raise exception
assert False, "did not raise %s" % MXNetError.__name__

assert_almost_equal(exe.outputs[0], np.take(data_real, idx_real, axis=axis, mode=mode))
assert_almost_equal(exe.outputs[0], np.take(data_real, idx_real, axis=axis, mode=mode))

for i in np.nditer(idx_real):
if mode == 'clip':
i = np.clip(i, 0, data_shape[axis])
grad_helper(grad_in, axis, i)
for i in np.nditer(idx_real):
if mode == 'clip':
i = np.clip(i, 0, data_shape[axis])
grad_helper(grad_in, axis, i)

exe.backward([mx.nd.array(grad_out)])
assert_almost_equal(exe.grad_dict['a'], grad_in)
exe.backward([mx.nd.array(grad_out)])
assert_almost_equal(exe.grad_dict['a'], grad_in)


def test_grid_generator():
Expand Down