Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.feature

import breeze.linalg.{DenseVector => BDV, SparseVector => BSV}

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.mllib.linalg.{Vector, Vectors}

/**
* :: DeveloperApi ::
* Normalizes samples individually to unit L^p^ norm
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

^p^ (fun to read ^o^)

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

lol...

*
* For any 1 <= p < Double.PositiveInfinity, normalizes samples using
* sum(abs(vector).^p^)^(1/p)^ as norm.
*
* For p = Double.PositiveInfinity, max(abs(vector)) will be used as norm for normalization.
*
* @param p Normalization in L^p^ space, p = 2 by default.
*/
@DeveloperApi
class Normalizer(p: Double) extends VectorTransformer {

def this() = this(2)

require(p >= 1.0)

/**
* Applies unit length normalization on a vector.
*
* @param vector vector to be normalized.
* @return normalized vector. If the norm of the input is zero, it will return the input vector.
*/
override def transform(vector: Vector): Vector = {
var norm = vector.toBreeze.norm(p)

if (norm != 0.0) {
// For dense vector, we've to allocate new memory for new output vector.
// However, for sparse vector, the `index` array will not be changed,
// so we can re-use it to save memory.
vector.toBreeze match {
case dv: BDV[Double] => Vectors.fromBreeze(dv :/ norm)
case sv: BSV[Double] =>
val output = new BSV[Double](sv.index, sv.data.clone(), sv.length)
var i = 0
while (i < output.data.length) {
output.data(i) /= norm
i += 1
}
Vectors.fromBreeze(output)
case v => throw new IllegalArgumentException("Do not support vector type " + v.getClass)
}
} else {
// Since the norm is zero, return the input vector object itself.
// Note that it's safe since we always assume that the data in RDD
// should be immutable.
vector
}
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,119 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.feature

import breeze.linalg.{DenseVector => BDV, SparseVector => BSV, Vector => BV}

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.mllib.linalg.{Vector, Vectors}
import org.apache.spark.mllib.rdd.RDDFunctions._
import org.apache.spark.mllib.stat.MultivariateOnlineSummarizer
import org.apache.spark.rdd.RDD

/**
* :: DeveloperApi ::
* Standardizes features by removing the mean and scaling to unit variance using column summary
* statistics on the samples in the training set.
*
* @param withMean False by default. Centers the data with mean before scaling. It will build a
* dense output, so this does not work on sparse input and will raise an exception.
* @param withStd True by default. Scales the data to unit standard deviation.
*/
@DeveloperApi
class StandardScaler(withMean: Boolean, withStd: Boolean) extends VectorTransformer {

def this() = this(false, true)

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do you mind throwing a warning message if both withMean and withStd are false?

require(withMean || withStd, s"withMean and withStd both equal to false. Doing nothing.")

private var mean: BV[Double] = _
private var factor: BV[Double] = _

/**
* Computes the mean and variance and stores as a model to be used for later scaling.
*
* @param data The data used to compute the mean and variance to build the transformation model.
* @return This StandardScalar object.
*/
def fit(data: RDD[Vector]): this.type = {
val summary = data.treeAggregate(new MultivariateOnlineSummarizer)(
(aggregator, data) => aggregator.add(data),
(aggregator1, aggregator2) => aggregator1.merge(aggregator2))

mean = summary.mean.toBreeze
factor = summary.variance.toBreeze
require(mean.length == factor.length)

var i = 0
while (i < factor.length) {
factor(i) = if (factor(i) != 0.0) 1.0 / math.sqrt(factor(i)) else 0.0
i += 1
}

this
}

/**
* Applies standardization transformation on a vector.
*
* @param vector Vector to be standardized.
* @return Standardized vector. If the variance of a column is zero, it will return default `0.0`
* for the column with zero variance.
*/
override def transform(vector: Vector): Vector = {
if (mean == null || factor == null) {
throw new IllegalStateException(
"Haven't learned column summary statistics yet. Call fit first.")
}

require(vector.size == mean.length)

if (withMean) {
vector.toBreeze match {
case dv: BDV[Double] =>
val output = vector.toBreeze.copy
var i = 0
while (i < output.length) {
output(i) = (output(i) - mean(i)) * (if (withStd) factor(i) else 1.0)
i += 1
}
Vectors.fromBreeze(output)
case v => throw new IllegalArgumentException("Do not support vector type " + v.getClass)
}
} else if (withStd) {
vector.toBreeze match {
case dv: BDV[Double] => Vectors.fromBreeze(dv :* factor)
case sv: BSV[Double] =>
// For sparse vector, the `index` array inside sparse vector object will not be changed,
// so we can re-use it to save memory.
val output = new BSV[Double](sv.index, sv.data.clone(), sv.length)
var i = 0
while (i < output.data.length) {
output.data(i) *= factor(output.index(i))
i += 1
}
Vectors.fromBreeze(output)
case v => throw new IllegalArgumentException("Do not support vector type " + v.getClass)
}
} else {
// Note that it's safe since we always assume that the data in RDD should be immutable.
vector
}
}

}
Original file line number Diff line number Diff line change
@@ -0,0 +1,51 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.feature

import org.apache.spark.annotation.DeveloperApi
import org.apache.spark.mllib.linalg.Vector
import org.apache.spark.rdd.RDD

/**
* :: DeveloperApi ::
* Trait for transformation of a vector
*/
@DeveloperApi
trait VectorTransformer extends Serializable {

/**
* Applies transformation on a vector.
*
* @param vector vector to be transformed.
* @return transformed vector.
*/
def transform(vector: Vector): Vector

/**
* Applies transformation on an RDD[Vector].
*
* @param data RDD[Vector] to be transformed.
* @return transformed RDD[Vector].
*/
def transform(data: RDD[Vector]): RDD[Vector] = {
// Later in #1498 , all RDD objects are sent via broadcasting instead of akka.
// So it should be no longer necessary to explicitly broadcast `this` object.
data.map(x => this.transform(x))
}

}
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@ package org.apache.spark.mllib.linalg.distributed

import java.util.Arrays

import breeze.linalg.{Vector => BV, DenseMatrix => BDM, DenseVector => BDV, SparseVector => BSV}
import breeze.linalg.{DenseMatrix => BDM, DenseVector => BDV, SparseVector => BSV}
import breeze.linalg.{svd => brzSvd, axpy => brzAxpy}
import breeze.numerics.{sqrt => brzSqrt}
import com.github.fommil.netlib.BLAS.{getInstance => blas}
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,120 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

package org.apache.spark.mllib.feature

import org.scalatest.FunSuite

import org.apache.spark.mllib.linalg.{DenseVector, SparseVector, Vectors}
import org.apache.spark.mllib.util.LocalSparkContext
import org.apache.spark.mllib.util.TestingUtils._

class NormalizerSuite extends FunSuite with LocalSparkContext {

val data = Array(
Vectors.sparse(3, Seq((0, -2.0), (1, 2.3))),
Vectors.dense(0.0, 0.0, 0.0),
Vectors.dense(0.6, -1.1, -3.0),
Vectors.sparse(3, Seq((1, 0.91), (2, 3.2))),
Vectors.sparse(3, Seq((0, 5.7), (1, 0.72), (2, 2.7))),
Vectors.sparse(3, Seq())
)

lazy val dataRDD = sc.parallelize(data, 3)

test("Normalization using L1 distance") {
val l1Normalizer = new Normalizer(1)

val data1 = data.map(l1Normalizer.transform)
val data1RDD = l1Normalizer.transform(dataRDD)

assert((data, data1, data1RDD.collect()).zipped.forall {
case (v1: DenseVector, v2: DenseVector, v3: DenseVector) => true
case (v1: SparseVector, v2: SparseVector, v3: SparseVector) => true
case _ => false
}, "The vector type should be preserved after normalization.")

assert((data1, data1RDD.collect()).zipped.forall((v1, v2) => v1 ~== v2 absTol 1E-5))

assert(data1(0).toBreeze.norm(1) ~== 1.0 absTol 1E-5)
assert(data1(2).toBreeze.norm(1) ~== 1.0 absTol 1E-5)
assert(data1(3).toBreeze.norm(1) ~== 1.0 absTol 1E-5)
assert(data1(4).toBreeze.norm(1) ~== 1.0 absTol 1E-5)

assert(data1(0) ~== Vectors.sparse(3, Seq((0, -0.465116279), (1, 0.53488372))) absTol 1E-5)
assert(data1(1) ~== Vectors.dense(0.0, 0.0, 0.0) absTol 1E-5)
assert(data1(2) ~== Vectors.dense(0.12765957, -0.23404255, -0.63829787) absTol 1E-5)
assert(data1(3) ~== Vectors.sparse(3, Seq((1, 0.22141119), (2, 0.7785888))) absTol 1E-5)
assert(data1(4) ~== Vectors.dense(0.625, 0.07894737, 0.29605263) absTol 1E-5)
assert(data1(5) ~== Vectors.sparse(3, Seq()) absTol 1E-5)
}

test("Normalization using L2 distance") {
val l2Normalizer = new Normalizer()

val data2 = data.map(l2Normalizer.transform)
val data2RDD = l2Normalizer.transform(dataRDD)

assert((data, data2, data2RDD.collect()).zipped.forall {
case (v1: DenseVector, v2: DenseVector, v3: DenseVector) => true
case (v1: SparseVector, v2: SparseVector, v3: SparseVector) => true
case _ => false
}, "The vector type should be preserved after normalization.")

assert((data2, data2RDD.collect()).zipped.forall((v1, v2) => v1 ~== v2 absTol 1E-5))

assert(data2(0).toBreeze.norm(2) ~== 1.0 absTol 1E-5)
assert(data2(2).toBreeze.norm(2) ~== 1.0 absTol 1E-5)
assert(data2(3).toBreeze.norm(2) ~== 1.0 absTol 1E-5)
assert(data2(4).toBreeze.norm(2) ~== 1.0 absTol 1E-5)

assert(data2(0) ~== Vectors.sparse(3, Seq((0, -0.65617871), (1, 0.75460552))) absTol 1E-5)
assert(data2(1) ~== Vectors.dense(0.0, 0.0, 0.0) absTol 1E-5)
assert(data2(2) ~== Vectors.dense(0.184549876, -0.3383414, -0.922749378) absTol 1E-5)
assert(data2(3) ~== Vectors.sparse(3, Seq((1, 0.27352993), (2, 0.96186349))) absTol 1E-5)
assert(data2(4) ~== Vectors.dense(0.897906166, 0.113419726, 0.42532397) absTol 1E-5)
assert(data2(5) ~== Vectors.sparse(3, Seq()) absTol 1E-5)
}

test("Normalization using L^Inf distance.") {
val lInfNormalizer = new Normalizer(Double.PositiveInfinity)

val dataInf = data.map(lInfNormalizer.transform)
val dataInfRDD = lInfNormalizer.transform(dataRDD)

assert((data, dataInf, dataInfRDD.collect()).zipped.forall {
case (v1: DenseVector, v2: DenseVector, v3: DenseVector) => true
case (v1: SparseVector, v2: SparseVector, v3: SparseVector) => true
case _ => false
}, "The vector type should be preserved after normalization.")

assert((dataInf, dataInfRDD.collect()).zipped.forall((v1, v2) => v1 ~== v2 absTol 1E-5))

assert(dataInf(0).toArray.map(Math.abs).max ~== 1.0 absTol 1E-5)
assert(dataInf(2).toArray.map(Math.abs).max ~== 1.0 absTol 1E-5)
assert(dataInf(3).toArray.map(Math.abs).max ~== 1.0 absTol 1E-5)
assert(dataInf(4).toArray.map(Math.abs).max ~== 1.0 absTol 1E-5)

assert(dataInf(0) ~== Vectors.sparse(3, Seq((0, -0.86956522), (1, 1.0))) absTol 1E-5)
assert(dataInf(1) ~== Vectors.dense(0.0, 0.0, 0.0) absTol 1E-5)
assert(dataInf(2) ~== Vectors.dense(0.2, -0.36666667, -1.0) absTol 1E-5)
assert(dataInf(3) ~== Vectors.sparse(3, Seq((1, 0.284375), (2, 1.0))) absTol 1E-5)
assert(dataInf(4) ~== Vectors.dense(1.0, 0.12631579, 0.473684211) absTol 1E-5)
assert(dataInf(5) ~== Vectors.sparse(3, Seq()) absTol 1E-5)
}

}
Loading