Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
17 changes: 2 additions & 15 deletions R/pkg/inst/tests/testthat/test_mllib_classification.R
Original file line number Diff line number Diff line change
Expand Up @@ -284,22 +284,11 @@ test_that("spark.mlp", {
c("1.0", "1.0", "1.0", "1.0", "0.0", "1.0", "2.0", "2.0", "1.0", "0.0"))

# test initialWeights
model <- spark.mlp(df, label ~ features, layers = c(4, 3), maxIter = 2, initialWeights =
model <- spark.mlp(df, label ~ features, layers = c(4, 3), initialWeights =
c(0, 0, 0, 0, 0, 5, 5, 5, 5, 5, 9, 9, 9, 9, 9))
mlpPredictions <- collect(select(predict(model, mlpTestDF), "prediction"))
expect_equal(head(mlpPredictions$prediction, 10),
c("1.0", "1.0", "2.0", "1.0", "2.0", "1.0", "2.0", "2.0", "1.0", "0.0"))

model <- spark.mlp(df, label ~ features, layers = c(4, 3), maxIter = 2, initialWeights =
c(0.0, 0.0, 0.0, 0.0, 0.0, 5.0, 5.0, 5.0, 5.0, 5.0, 9.0, 9.0, 9.0, 9.0, 9.0))
mlpPredictions <- collect(select(predict(model, mlpTestDF), "prediction"))
expect_equal(head(mlpPredictions$prediction, 10),
c("1.0", "1.0", "2.0", "1.0", "2.0", "1.0", "2.0", "2.0", "1.0", "0.0"))

model <- spark.mlp(df, label ~ features, layers = c(4, 3), maxIter = 2)
mlpPredictions <- collect(select(predict(model, mlpTestDF), "prediction"))
expect_equal(head(mlpPredictions$prediction, 10),
c("1.0", "1.0", "1.0", "1.0", "0.0", "1.0", "0.0", "0.0", "1.0", "0.0"))
c("1.0", "1.0", "1.0", "1.0", "0.0", "1.0", "2.0", "2.0", "1.0", "0.0"))

# Test formula works well
df <- suppressWarnings(createDataFrame(iris))
Expand All @@ -310,8 +299,6 @@ test_that("spark.mlp", {
expect_equal(summary$numOfOutputs, 3)
expect_equal(summary$layers, c(4, 3))
expect_equal(length(summary$weights), 15)
expect_equal(head(summary$weights, 5), list(-0.5793153, -4.652961, 6.216155, -6.649478,
-10.51147), tolerance = 1e-3)
})

test_that("spark.naiveBayes", {
Expand Down
71 changes: 36 additions & 35 deletions python/pyspark/ml/classification.py
Original file line number Diff line number Diff line change
Expand Up @@ -185,34 +185,33 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredicti
>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> bdf = sc.parallelize([
... Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)),
... Row(label=0.0, weight=2.0, features=Vectors.sparse(1, [], []))]).toDF()
>>> blor = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight")
... Row(label=1.0, weight=1.0, features=Vectors.dense(0.0, 5.0)),
... Row(label=0.0, weight=2.0, features=Vectors.dense(1.0, 2.0)),
... Row(label=1.0, weight=3.0, features=Vectors.dense(2.0, 1.0)),
... Row(label=0.0, weight=4.0, features=Vectors.dense(3.0, 3.0))]).toDF()
>>> blor = LogisticRegression(regParam=0.01, weightCol="weight")
>>> blorModel = blor.fit(bdf)
>>> blorModel.coefficients
DenseVector([5.4...])
DenseVector([-1.080..., -0.646...])
>>> blorModel.intercept
-2.63...
>>> mdf = sc.parallelize([
... Row(label=1.0, weight=2.0, features=Vectors.dense(1.0)),
... Row(label=0.0, weight=2.0, features=Vectors.sparse(1, [], [])),
... Row(label=2.0, weight=2.0, features=Vectors.dense(3.0))]).toDF()
>>> mlor = LogisticRegression(maxIter=5, regParam=0.01, weightCol="weight",
... family="multinomial")
3.112...
>>> data_path = "data/mllib/sample_multiclass_classification_data.txt"
>>> mdf = spark.read.format("libsvm").load(data_path)
>>> mlor = LogisticRegression(regParam=0.1, elasticNetParam=1.0, family="multinomial")
>>> mlorModel = mlor.fit(mdf)
>>> mlorModel.coefficientMatrix
DenseMatrix(3, 1, [-2.3..., 0.2..., 2.1...], 1)
SparseMatrix(3, 4, [0, 1, 2, 3], [3, 2, 1], [1.87..., -2.75..., -0.50...], 1)
>>> mlorModel.interceptVector
DenseVector([2.1..., 0.6..., -2.8...])
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0))]).toDF()
DenseVector([0.04..., -0.42..., 0.37...])
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 1.0))]).toDF()
>>> result = blorModel.transform(test0).head()
>>> result.prediction
0.0
1.0
>>> result.probability
DenseVector([0.99..., 0.00...])
DenseVector([0.02..., 0.97...])
>>> result.rawPrediction
DenseVector([8.12..., -8.12...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(1, [0], [1.0]))]).toDF()
DenseVector([-3.54..., 3.54...])
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF()
>>> blorModel.transform(test1).head().prediction
1.0
>>> blor.setParams("vector")
Expand All @@ -222,8 +221,8 @@ class LogisticRegression(JavaEstimator, HasFeaturesCol, HasLabelCol, HasPredicti
>>> lr_path = temp_path + "/lr"
>>> blor.save(lr_path)
>>> lr2 = LogisticRegression.load(lr_path)
>>> lr2.getMaxIter()
5
>>> lr2.getRegParam()
0.01
>>> model_path = temp_path + "/lr_model"
>>> blorModel.save(model_path)
>>> model2 = LogisticRegressionModel.load(model_path)
Expand Down Expand Up @@ -1480,31 +1479,33 @@ class OneVsRest(Estimator, OneVsRestParams, MLReadable, MLWritable):

>>> from pyspark.sql import Row
>>> from pyspark.ml.linalg import Vectors
>>> df = sc.parallelize([
... Row(label=0.0, features=Vectors.dense(1.0, 0.8)),
... Row(label=1.0, features=Vectors.sparse(2, [], [])),
... Row(label=2.0, features=Vectors.dense(0.5, 0.5))]).toDF()
>>> lr = LogisticRegression(maxIter=5, regParam=0.01)
>>> data_path = "data/mllib/sample_multiclass_classification_data.txt"
>>> df = spark.read.format("libsvm").load(data_path)
>>> lr = LogisticRegression(regParam=0.01)
>>> ovr = OneVsRest(classifier=lr)
>>> model = ovr.fit(df)
>>> [x.coefficients for x in model.models]
[DenseVector([4.9791, 2.426]), DenseVector([-4.1198, -5.9326]), DenseVector([-3.314, 5.2423])]
>>> model.models[0].coefficients
DenseVector([0.5..., -1.0..., 3.4..., 4.2...])
>>> model.models[1].coefficients
DenseVector([-2.1..., 3.1..., -2.6..., -2.3...])
>>> model.models[2].coefficients
DenseVector([0.3..., -3.4..., 1.0..., -1.1...])
>>> [x.intercept for x in model.models]
[-5.06544..., 2.30341..., -1.29133...]
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 0.0))]).toDF()
[-2.7..., -2.5..., -1.3...]
>>> test0 = sc.parallelize([Row(features=Vectors.dense(-1.0, 0.0, 1.0, 1.0))]).toDF()
>>> model.transform(test0).head().prediction
1.0
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(2, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
0.0
>>> test2 = sc.parallelize([Row(features=Vectors.dense(0.5, 0.4))]).toDF()
>>> model.transform(test2).head().prediction
>>> test1 = sc.parallelize([Row(features=Vectors.sparse(4, [0], [1.0]))]).toDF()
>>> model.transform(test1).head().prediction
2.0
>>> test2 = sc.parallelize([Row(features=Vectors.dense(0.5, 0.4, 0.3, 0.2))]).toDF()
>>> model.transform(test2).head().prediction
0.0
>>> model_path = temp_path + "/ovr_model"
>>> model.save(model_path)
>>> model2 = OneVsRestModel.load(model_path)
>>> model2.transform(test0).head().prediction
1.0
0.0

.. versionadded:: 2.0.0
"""
Expand Down