Skip to content

[Bug] [Relax] Missing IR structure checking and correction #17211

@Cookiee235

Description

@Cookiee235

Hi all, I set check_well_formed=True in the below Relax IR construction and can run mod.show() to show the IR successfully. It seems the Relax IR passed the legitimacy checking. However, the compilation crashed when executing ex = relax.build(mod, target='llvm'). The crash message shows that
"Argument 0 type mismatch: expected R.Tensor((16,), dtype="float32"), given R.Tuple(R.Tensor((16,), dtype="float32"))"

Based on my analysis, if we replace the code gv1 = R.call_tir(cls.relu, (x), out_sinfo=R.Tensor((1, 512, 64, 64))) (Line 26) with gv1 = R.nn.relu(x) (Line 27) or gv1 = R.call_tir(cls.relu, (x,), out_sinfo=R.Tensor((1, 512, 64, 64), dtype="float32")) (Line 28), the script can run well.
Even if the Relax IR constructor can convert gv1 = R.nn.relu(x) to full information with type based on the context, why didn't it complete the missing type for gv1 (Line 26).

To take a step back, if the Relax IR constructor cannot complete the missing information and we set check_cell_formed=True in the Relax IR construction, we should throw an exception early in mod = Module rather than relax.build(). Early crashes will make the code more robust.

BTW, I prefer the IR constructor can fill in missing information or correct the inconsistent constraints based on IRs' context.

Actual behavior

Traceback (most recent call last):
  File "demo_simple.py", line 26, in <module>
    ex = relax.build(mod, target='llvm')  # crash here!
         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/software/tvm/python/tvm/relax/vm_build.py", line 335, in build
    mod = pipeline(mod)
          ^^^^^^^^^^^^^
  File "/software/tvm/python/tvm/ir/transform.py", line 238, in __call__
    return _ffi_transform_api.RunPass(self, mod)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/software/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 239, in __call__
    raise_last_ffi_error()
  File "/software/tvm/python/tvm/_ffi/base.py", line 481, in raise_last_ffi_error
    raise py_err
  File "/software/tvm/python/tvm/relax/pipeline.py", line 101, in _pipeline
    mod = seq(mod)
          ^^^^^^^^
  File "/software/tvm/python/tvm/ir/transform.py", line 238, in __call__
    return _ffi_transform_api.RunPass(self, mod)
           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
  File "/software/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 239, in __call__
    raise_last_ffi_error()
  File "/software/tvm/python/tvm/_ffi/base.py", line 481, in raise_last_ffi_error
    raise py_err
tvm._ffi.base.TVMError: Traceback (most recent call last):
  38: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::transform::Pass, tvm::IRModule)>::AssignTypedLambda<tvm::transform::{lambda(tvm::transform::Pass, tvm::IRModule)#7}>(tvm::transform::{lambda(tvm::transform::Pass, tvm::IRModule)#7}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
  37: tvm::transform::Pass::operator()(tvm::IRModule) const
  36: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  35: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  34: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  33: tvm::transform::ModulePassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  32: _ZN3tvm7runtime13PackedFuncObj9ExtractorINS0_1
  31: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::IRModule, tvm::transform::PassContext)>::AssignTypedLambda<tvm::relax::transform::CallTIRRewrite()::{lambda(tvm::IRModule, tvm::transform::PassContext)#1}>(tvm::relax::transform::CallTIRRewrite()::{lambda(tvm::IRModule, tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*) const
  30: tvm::relax::CallTIRMutator::Run()
  29: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
  28: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
  27: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
  26: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::FunctionNode const*)
  25: tvm::relax::ExprMutator::VisitWithNewScope(tvm::RelayExpr const&, tvm::runtime::Optional<tvm::runtime::Array<tvm::relax::Var, void> >)
  24: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
  23: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
  22: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
  21: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::SeqExprNode const*)
  20: tvm::relax::ExprMutator::VisitBindingBlock(tvm::relax::BindingBlock const&)
  19: tvm::relax::ExprMutator::VisitBindingBlock_(tvm::relax::BindingBlockNode const*)
  18: tvm::relax::ExprMutator::VisitBinding(tvm::relax::Binding const&)
  17: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode const*)
  16: _ZZN3tvm5relax11ExprMutator22InitVisitBindingVTabl
  15: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode const*, tvm::relax::CallNode const*)
  14: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
  13: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
  12: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
  11: tvm::relax::CallTIRMutator::VisitExpr_(tvm::relax::CallNode const*)
  10: tvm::relax::BlockBuilderImpl::Emit(tvm::RelayExpr, tvm::runtime::String)
  9: tvm::relax::BlockBuilderImpl::Emit(tvm::RelayExpr, bool, tvm::runtime::String)
  8: tvm::relax::Normalizer::Normalize(tvm::RelayExpr const&)
  7: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
  6: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
  5: non-virtual thunk to tvm::relax::Normalizer::VisitExpr_(tvm::relax::CallNode const*)
  4: tvm::relax::Normalizer::VisitExpr_(tvm::relax::CallNode const*)
  3: tvm::relax::Normalizer::InferStructInfo(tvm::relax::Call const&)
  2: tvm::relax::DeriveCallRetStructInfo(tvm::relax::FuncStructInfo const&, tvm::relax::Call const&, tvm::relax::BlockBuilder const&, tvm::arith::Analyzer*)
  1: tvm::relax::CallRetStructInfoDeriver::Derive(tvm::relax::FuncStructInfo const&, tvm::relax::Call const&, tvm::relax::BlockBuilder const&)
  0: tvm::relax::BlockBuilderImpl::ReportFatal(tvm::Diagnostic const&)
  File "/software/tvm/src/relax/ir/block_builder.cc", line 159
TVMError: Argument 0 type mismatch: expected R.Tensor((16,), dtype="float32"), given R.Tuple(R.Tensor((16,), dtype="float32"))

Environment

  • TVM: 0.17.dev0

Steps to reproduce

import tvm
from tvm import relax
from tvm.script import ir as I
from tvm.script import tir as T
from tvm.script import relax as R


@I.ir_module(check_well_formed=True)
class Module:
    @T.prim_func(private=True)
    #def relu(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), B: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32")):
    def relu(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), B: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)))):
        T.func_attr({"op_pattern": 0})
        # with T.block("root"):
        for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
            with T.block("relu"):
                v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
                T.reads(A[v_i0, v_i1, v_i2, v_i3])
                T.writes(B[v_i0, v_i1, v_i2, v_i3])
                B[v_i0, v_i1, v_i2, v_i3] = T.max(A[v_i0, v_i1, v_i2, v_i3], T.float32(0))

    @R.function
    def main(x: R.Tensor((1, 512, 64, 64), dtype="float32")) -> R.Tensor((1, 512, 64, 64), dtype="float32"):
        cls = Module
        with R.dataflow():
            gv1 = R.call_tir(cls.relu, (x), out_sinfo=R.Tensor((1, 512, 64, 64)))  # crash
            # gv1 = R.nn.relu(x)  # run well
            # gv1 = R.call_tir(cls.relu, (x,), out_sinfo=R.Tensor((1, 512, 64, 64), dtype="float32"))  # run well
            R.output(gv1)
        return gv1

mod = Module
mod.show()

mod = relax.transform.FuseTIR()(mod)
mod = relax.transform.LambdaLift()(mod)
ex = relax.build(mod, target='llvm')

cc @Lunderberg @junrushao @tqchen

Metadata

Metadata

Assignees

No one assigned

    Labels

    needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions