-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Description
Hi all, I set check_well_formed=True in the below Relax IR construction and can run mod.show() to show the IR successfully. It seems the Relax IR passed the legitimacy checking. However, the compilation crashed when executing ex = relax.build(mod, target='llvm'). The crash message shows that
"Argument 0 type mismatch: expected R.Tensor((16,), dtype="float32"), given R.Tuple(R.Tensor((16,), dtype="float32"))"
Based on my analysis, if we replace the code gv1 = R.call_tir(cls.relu, (x), out_sinfo=R.Tensor((1, 512, 64, 64))) (Line 26) with gv1 = R.nn.relu(x) (Line 27) or gv1 = R.call_tir(cls.relu, (x,), out_sinfo=R.Tensor((1, 512, 64, 64), dtype="float32")) (Line 28), the script can run well.
Even if the Relax IR constructor can convert gv1 = R.nn.relu(x) to full information with type based on the context, why didn't it complete the missing type for gv1 (Line 26).
To take a step back, if the Relax IR constructor cannot complete the missing information and we set check_cell_formed=True in the Relax IR construction, we should throw an exception early in mod = Module rather than relax.build(). Early crashes will make the code more robust.
BTW, I prefer the IR constructor can fill in missing information or correct the inconsistent constraints based on IRs' context.
Actual behavior
Traceback (most recent call last):
File "demo_simple.py", line 26, in <module>
ex = relax.build(mod, target='llvm') # crash here!
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/software/tvm/python/tvm/relax/vm_build.py", line 335, in build
mod = pipeline(mod)
^^^^^^^^^^^^^
File "/software/tvm/python/tvm/ir/transform.py", line 238, in __call__
return _ffi_transform_api.RunPass(self, mod)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/software/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 239, in __call__
raise_last_ffi_error()
File "/software/tvm/python/tvm/_ffi/base.py", line 481, in raise_last_ffi_error
raise py_err
File "/software/tvm/python/tvm/relax/pipeline.py", line 101, in _pipeline
mod = seq(mod)
^^^^^^^^
File "/software/tvm/python/tvm/ir/transform.py", line 238, in __call__
return _ffi_transform_api.RunPass(self, mod)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/software/tvm/python/tvm/_ffi/_ctypes/packed_func.py", line 239, in __call__
raise_last_ffi_error()
File "/software/tvm/python/tvm/_ffi/base.py", line 481, in raise_last_ffi_error
raise py_err
tvm._ffi.base.TVMError: Traceback (most recent call last):
38: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::transform::Pass, tvm::IRModule)>::AssignTypedLambda<tvm::transform::{lambda(tvm::transform::Pass, tvm::IRModule)#7}>(tvm::transform::{lambda(tvm::transform::Pass, tvm::IRModule)#7}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
37: tvm::transform::Pass::operator()(tvm::IRModule) const
36: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
35: tvm::transform::SequentialNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
34: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
33: tvm::transform::ModulePassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
32: _ZN3tvm7runtime13PackedFuncObj9ExtractorINS0_1
31: tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::IRModule, tvm::transform::PassContext)>::AssignTypedLambda<tvm::relax::transform::CallTIRRewrite()::{lambda(tvm::IRModule, tvm::transform::PassContext)#1}>(tvm::relax::transform::CallTIRRewrite()::{lambda(tvm::IRModule, tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*) const
30: tvm::relax::CallTIRMutator::Run()
29: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
28: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
27: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
26: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::FunctionNode const*)
25: tvm::relax::ExprMutator::VisitWithNewScope(tvm::RelayExpr const&, tvm::runtime::Optional<tvm::runtime::Array<tvm::relax::Var, void> >)
24: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
23: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
22: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
21: tvm::relax::ExprMutator::VisitExpr_(tvm::relax::SeqExprNode const*)
20: tvm::relax::ExprMutator::VisitBindingBlock(tvm::relax::BindingBlock const&)
19: tvm::relax::ExprMutator::VisitBindingBlock_(tvm::relax::BindingBlockNode const*)
18: tvm::relax::ExprMutator::VisitBinding(tvm::relax::Binding const&)
17: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode const*)
16: _ZZN3tvm5relax11ExprMutator22InitVisitBindingVTabl
15: tvm::relax::ExprMutator::VisitBinding_(tvm::relax::VarBindingNode const*, tvm::relax::CallNode const*)
14: tvm::relax::ExprMutator::VisitExpr(tvm::RelayExpr const&)
13: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
12: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
11: tvm::relax::CallTIRMutator::VisitExpr_(tvm::relax::CallNode const*)
10: tvm::relax::BlockBuilderImpl::Emit(tvm::RelayExpr, tvm::runtime::String)
9: tvm::relax::BlockBuilderImpl::Emit(tvm::RelayExpr, bool, tvm::runtime::String)
8: tvm::relax::Normalizer::Normalize(tvm::RelayExpr const&)
7: tvm::relax::ExprFunctor<tvm::RelayExpr (tvm::RelayExpr const&)>::VisitExpr(tvm::RelayExpr const&)
6: _ZZN3tvm5relax11ExprFunctorIFNS_9RelayExprERKS2_EE10InitVTableEvENUlRKNS_7runtime9ObjectRef
5: non-virtual thunk to tvm::relax::Normalizer::VisitExpr_(tvm::relax::CallNode const*)
4: tvm::relax::Normalizer::VisitExpr_(tvm::relax::CallNode const*)
3: tvm::relax::Normalizer::InferStructInfo(tvm::relax::Call const&)
2: tvm::relax::DeriveCallRetStructInfo(tvm::relax::FuncStructInfo const&, tvm::relax::Call const&, tvm::relax::BlockBuilder const&, tvm::arith::Analyzer*)
1: tvm::relax::CallRetStructInfoDeriver::Derive(tvm::relax::FuncStructInfo const&, tvm::relax::Call const&, tvm::relax::BlockBuilder const&)
0: tvm::relax::BlockBuilderImpl::ReportFatal(tvm::Diagnostic const&)
File "/software/tvm/src/relax/ir/block_builder.cc", line 159
TVMError: Argument 0 type mismatch: expected R.Tensor((16,), dtype="float32"), given R.Tuple(R.Tensor((16,), dtype="float32"))
Environment
- TVM: 0.17.dev0
Steps to reproduce
import tvm
from tvm import relax
from tvm.script import ir as I
from tvm.script import tir as T
from tvm.script import relax as R
@I.ir_module(check_well_formed=True)
class Module:
@T.prim_func(private=True)
#def relu(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), B: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32")):
def relu(A: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)), "float32"), B: T.Buffer((T.int64(1), T.int64(512), T.int64(64), T.int64(64)))):
T.func_attr({"op_pattern": 0})
# with T.block("root"):
for i0, i1, i2, i3 in T.grid(T.int64(1), T.int64(512), T.int64(64), T.int64(64)):
with T.block("relu"):
v_i0, v_i1, v_i2, v_i3 = T.axis.remap("SSSS", [i0, i1, i2, i3])
T.reads(A[v_i0, v_i1, v_i2, v_i3])
T.writes(B[v_i0, v_i1, v_i2, v_i3])
B[v_i0, v_i1, v_i2, v_i3] = T.max(A[v_i0, v_i1, v_i2, v_i3], T.float32(0))
@R.function
def main(x: R.Tensor((1, 512, 64, 64), dtype="float32")) -> R.Tensor((1, 512, 64, 64), dtype="float32"):
cls = Module
with R.dataflow():
gv1 = R.call_tir(cls.relu, (x), out_sinfo=R.Tensor((1, 512, 64, 64))) # crash
# gv1 = R.nn.relu(x) # run well
# gv1 = R.call_tir(cls.relu, (x,), out_sinfo=R.Tensor((1, 512, 64, 64), dtype="float32")) # run well
R.output(gv1)
return gv1
mod = Module
mod.show()
mod = relax.transform.FuseTIR()(mod)
mod = relax.transform.LambdaLift()(mod)
ex = relax.build(mod, target='llvm')