Skip to content

Simplify the if statement in backprop depthwise convolution #294

@wetliu

Description

@wetliu

Hi everyone. I am working on the backward method for the depth wise convolution. The implementation I currently can think of has a lot of tvm.select. Is there any way we could simplify the code?

def trans(b, i, j, c):
    global Out_grad_cond
    Out_grad_cond = tvm.compute(
        (batch, in_h, in_w, out_c),
        lambda bo, io, jo, co: tvm.select(tvm.all(io >= tvm.select(0<(i - filter_h + pad_h + stride_h) / stride_h,(i-filter_h+pad_h+stride_h)/stride_h,tvm.const(0)),
                                                  io <  tvm.select(0<((i + pad_h) / stride_h)+1-out_h, tvm.const(out_h - 1), (i + pad_h) / stride_h),
                                                  jo >= tvm.select(0<(j - filter_w + pad_w + stride_w) / stride_w,(j-filter_w+pad_w+stride_w)/stride_w,tvm.const(0)),
                                                  jo <  tvm.select(0<((j + pad_w) / stride_w)+1-out_w, tvm.const(out_w - 1), (j + pad_w) / stride_w)),
                                                  Out_grad[b, i, j, c], tvm.const(0.0)))

    di = tvm.reduce_axis((0, out_h-1), name='di')
    dj = tvm.reduce_axis((0, out_w-1), name='dj')
    dc = tvm.reduce_axis((0, channel_multiplier), name='dc')

    return tvm.sum(Out_grad_cond[b, di, dj, c*channel_multiplier + dc] * Filter[i+pad_h-di*stride_h, j+pad_w-dj*stride_w, c, dc],axis=[di,dj,dc])

In_grad = tvm.compute(
         (batch, in_h, in_w, in_c),
         lambda b, i, j, c: trans(b,i,j,c),
         name='In_grad')

Thank you!

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions