-
Notifications
You must be signed in to change notification settings - Fork 3.8k
Closed
Description
Under windows,trying to run the example : Auto-tuning a convolutional network for x86 CPU this error occurs.
the error occurs in the last cell :
def tune_and_evaluate(tuning_opt):
# extract workloads from relay program
print("Extract tasks...")
mod, params, data_shape, out_shape = get_network(model_name, batch_size)
tasks = autotvm.task.extract_from_program(mod["main"], target=target,
params=params, ops=(relay.op.nn.conv2d,))
# run tuning tasks
print("Tuning...")
tune_kernels(tasks, **tuning_opt)
tune_graph(mod["main"], data_shape, log_file, graph_opt_sch_file)
# compile kernels with graph-level best records
with autotvm.apply_graph_best(graph_opt_sch_file):
print("Compile...")
with relay.build_config(opt_level=3):
graph, lib, params = relay.build_module.build(
mod, target=target, params=params)
# upload parameters to device
ctx = tvm.cpu()
data_tvm = tvm.nd.array((np.random.uniform(size=data_shape)).astype(dtype))
module = runtime.create(graph, lib, ctx)
module.set_input(input_name, data_tvm)
module.set_input(**params)
# evaluate
print("Evaluate inference time cost...")
ftimer = module.module.time_evaluator("run", ctx, number=100, repeat=3)
prof_res = np.array(ftimer().results) * 1000 # convert to millisecond
print("Mean inference time (std dev): %.2f ms (%.2f ms)" %
(np.mean(prof_res), np.std(prof_res)))
# We do not run the tuning in our webpage server since it takes too long.
# Uncomment the following line to run it by yourself.
# tune_and_evaluate(tuning_option)Error :
Extract tasks...
ANTLR runtime and generated code versions disagree: 4.8!=4.7.2
ANTLR runtime and generated code versions disagree: 4.8!=4.7.2
Tuning...
[Task 1/12] Current/Best: 0.00/ 0.00 GFLOPS | Progress: (0/252) | 0.00 sTraceback (most recent call last):
File "d:\Codes\tvm_testbed\tune_relay_x86.py", line 225, in <module>
tune_and_evaluate(tuning_option)
File "d:\Codes\tvm_testbed\tune_relay_x86.py", line 198, in tune_and_evaluate
tune_kernels(tasks, **tuning_opt)
File "d:\Codes\tvm_testbed\tune_relay_x86.py", line 170, in tune_kernels
autotvm.callback.log_to_file(log_filename)])
File "C:\Users\User\Anaconda3\lib\site-packages\tvm-0.7.dev0-py3.7-win-amd64.egg\tvm\autotvm\tuner\tuner.py", line 108, in tune
measure_batch = create_measure_batch(self.task, measure_option)
File "C:\Users\User\Anaconda3\lib\site-packages\tvm-0.7.dev0-py3.7-win-amd64.egg\tvm\autotvm\measure\measure.py", line 252, in create_measure_batch
attach_objects = runner.set_task(task)
File "C:\Users\User\Anaconda3\lib\site-packages\tvm-0.7.dev0-py3.7-win-amd64.egg\tvm\autotvm\measure\measure_methods.py", line 337, in set_task
tracker_addr=(tracker.host, tracker.port))
File "C:\Users\User\Anaconda3\lib\site-packages\tvm-0.7.dev0-py3.7-win-amd64.egg\tvm\rpc\server.py", line 369, in __init__
self.proc = subprocess.Popen(cmd, preexec_fn=os.setsid)
AttributeError: module 'os' has no attribute 'setsid'Metadata
Metadata
Assignees
Labels
No labels