Skip to content

[PatternLang] Lift constant nodes to partitioned function arguments #5662

@comaniac

Description

@comaniac

In #5656, we found that pattern.partition will not lift the bind constant nodes to the partitioned function arguments. This results in argument mismatch and could be a potential problem when applying to op fusion.

Here is an illustrative example:

import tvm
from tvm import relay
from tvm.relay.dataflow_pattern import *
from tvm.relay.build_module import bind_params_by_name
import numpy as np

x = relay.var('x', shape=(1, 3, 224, 224))
w = relay.var('w', shape=(3, 3, 3, 3))
b = relay.var('b', shape=(3,))

conv2d = relay.op.nn.conv2d(x, w)
out = relay.op.nn.bias_add(conv2d, b)
func = relay.Function([x, w, b], out)
mod = tvm.IRModule.from_expr(func)

mod["main"] = bind_params_by_name(mod["main"],
                                  {'w': tvm.nd.array(np.ones(shape=(3, 3, 3, 3)))})
print('=== Fuse ====')
print(relay.transform.FuseOps()(mod)['main'].body)

conv2d = is_op('nn.conv2d')(wildcard(), wildcard())
pattern = is_op('nn.bias_add')(conv2d, wildcard())
print('=== Partition ===')
print(pattern.partition(mod['main'].body, {'Composite': 'aa'}))

Output:

=== Fuse ====
free_var %x: Tensor[(1, 3, 224, 224), float32]
free_var %b: Tensor[(3), float32]
%1 = fn (%p0: Tensor[(1, 3, 224, 224), float32], %p1: Tensor[(3, 3, 3, 3), float64], %p2: Tensor[(3), float32], Primitive=1) -> Tensor[(1, 3, 222, 222), float32] {
  %0 = nn.conv2d(%p0, %p1, padding=[0, 0, 0, 0]) /* ty=Tensor[(1, 3, 222, 222), float32] */;
  nn.bias_add(%0, %p2) /* ty=Tensor[(1, 3, 222, 222), float32] */
};
%1(%x, meta[relay.Constant][0] /* ty=Tensor[(3, 3, 3, 3), float64] */ /* ty=Tensor[(3, 3, 3, 3), float64] */, %b) /* ty=Tensor[(1, 3, 222, 222), float32] */
// meta data omitted. you can use show_meta_data=True to include meta data

=== Partition ===
free_var %x: Tensor[(1, 3, 224, 224), float32]
free_var %b: Tensor[(3), float32]
%1 = fn (%FunctionVar_0_0, %FunctionVar_0_1, Composite="aa", PartitionedFromPattern="nn.conv2d_nn.bias_add_") {
  %0 = nn.conv2d(%FunctionVar_0_0, meta[relay.Constant][0] /* ty=Tensor[(3, 3, 3, 3), float64] */ /* ty=Tensor[(3, 3, 3, 3), float64] */, padding=[0, 0, 0, 0]);
  nn.bias_add(%0, %FunctionVar_0_1)
};
%1(%x, %b)
// meta data omitted. you can use show_meta_data=True to include meta data

We can see that the function generated by the op fusion keeps the original arguments and refers to the constant node in the function call. However, the partitioned function directly accesses the constant node from inside of the function body. Ideally, the partitioned should be same as the fused function.

cc @mbrookhart @masahi @zhiics

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions